
Annalisa Convertino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6906026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Resolution 3D Fabrication of Glass Fiber-Reinforced Polymer Nanocomposite (FRPN) Objects by Two-Photon Direct Laser Writing. ACS Applied Materials & Interfaces, 2022, , .	4.0	1
2	Biological Response to Bioinspired Microporous 3D-Printed Scaffolds for Bone Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 5383.	1.8	6
3	Label-Free Morpho-Molecular Imaging for Studying the Differential Interaction of Black Phosphorus with Tumor Cells. Nanomaterials, 2022, 12, 1994.	1.9	1
4	Silverâ€Coated Disordered Silicon Nanowires Provide Highly Sensitive Labelâ€Free Glycated Albumin Detection through Molecular Trapping and Plasmonic Hotspot Formation. Advanced Healthcare Materials, 2021, 10, e2001110.	3.9	23
5	Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Advanced Healthcare Materials, 2021, 10, e2001268.	3.9	15
6	Raman Mapping of Biological Systems Interacting with a Disordered Nanostructured Surface: A Simple and Powerful Approach to the Label-Free Analysis of Single DNA Bases. Micromachines, 2021, 12, 264.	1.4	4
7	Silver-coated silicon nanowire platform discriminates genomic DNA from normal and malignant human epithelial cells using label-free Raman spectroscopy. Materials Science and Engineering C, 2021, 122, 111951.	3.8	10
8	Nanowire Assisted Mechanotyping of Cellular Metastatic Potential. Advanced Functional Materials, 2021, 31, 2101638.	7.8	3
9	Efficient Photothermal Generation by Nanoscale Light Trapping in a Forest of Silicon Nanowires. Journal of Physical Chemistry C, 2021, 125, 14134-14140.	1.5	14
10	Physical and chemical mechanisms involved in adhesion of orthodontic bonding composites: in vitro evaluations. BMC Oral Health, 2021, 21, 350.	0.8	14
11	Post-annealing effects on stability of lasered nanostructured ZnO sensors for their usage in monitoring smart greenhouse. , 2020, , .		Ο
12	A Glialâ€Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. Advanced Biology, 2020, 4, e1900264.	3.0	20
13	Extracellular Recording Systems: A Glialâ€Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes (Adv.) Tj ETQq1 1 0.7843	81 4.œ BT	Oværlock 10
14	The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications. Advances in Physics: X, 2019, 4, 1664319.	1.5	12
15	Room temperature gas sensors based on laser-annealed ZnO nanostructures for gaseous pollutants detection. , 2019, , .		2
16	Alkaline phosphatase detection using electrochemical impedance of anti-alkaline phosphatase antibody (Ab354) functionalized silicon-nanowire-forest in phosphate buffer solution. Sensors and Actuators B: Chemical, 2018, 259, 809-815.	4.0	16
17	Array of disordered silicon nanowires coated by a gold film for combined NIR photothermal treatment of cancer cells and Raman monitoring of the process evolution. Nanotechnology, 2018, 29, 415102.	1.3	24
18	Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition. Applied Surface Science, 2017, 418, 430-436.	3.1	7

Annalisa Convertino

#	Article	IF	CITATIONS
19	Whole-Cell Electrochemical Biosensor Integrating Microbes with Si Nanowire-Forest. Journal of the Electrochemical Society, 2017, 164, B253-B257.	1.3	9
20	A Deep Morphological Characterization and Comparison of Different Dental Restorative Materials. BioMed Research International, 2017, 2017, 1-16.	0.9	12
21	3D plasmonic transducer based on gold nanoparticles produced by laser ablation on silica nanowires. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	2
22	A forest of SiO ₂ nanowires covered by a TiO ₂ thin film for an efficient photocatalytic water treatment. RSC Advances, 2016, 6, 91121-91126.	1.7	13
23	Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection. Scientific Reports, 2016, 6, 25099.	1.6	49
24	Performance of Whole-Cell Electrochemical Biosensor Using Integrated Microbes/Si Nano-Forest Structure. ECS Transactions, 2016, 75, 157-164.	0.3	6
25	Highly Disordered Array of Silicon Nanowires: an Effective and Scalable Approach for Performing and Flexible Electrochemical Biosensors. Advanced Healthcare Materials, 2016, 5, 575-583.	3.9	24
26	Investigation of functionalized silicon nanowires by self-assembled monolayer. Applied Surface Science, 2016, 367, 231-236.	3.1	7
27	Au nanoparticles decoration of silica nanowires for improved optical bio-sensing. Sensors and Actuators B: Chemical, 2016, 226, 589-597.	4.0	14
28	Three-dimensional Plasmonic Materials for Chemical Sensor Application. Lecture Notes in Electrical Engineering, 2015, , 171-175.	0.3	0
29	Advanced materials for improving biosensing performances of propagating and localized plasmonic transducers. Proceedings of SPIE, 2015, , .	0.8	Ο
30	Layered Double Hydroxides Intercalated with Chlorine Used as Low Temperature Gas Sensors. Procedia Engineering, 2015, 120, 1175-1178.	1.2	16
31	Investigation on nanostructured biosensor for Biotin detection. , 2014, , .		4
32	Silica Nanowires Decorated with Metal Nanoparticles for Refractive Index Sensors: Three-Dimensional Metal Arrays and Light Trapping at Plasmonic Resonances. Journal of Physical Chemistry C, 2014, 118, 685-690.	1.5	44
33	Light trapping systems for biosensor application Forest of silica nanowires decorated with plasmonic nanoparticles. , 2014, , .		0
34	Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells. Journal of Materials Chemistry C, 2013, 1, 6752.	2.7	21
35	On-chip fabrication of ultrasensitive NO ₂ sensors based on silicon nanowires. Applied Physics Letters, 2012, 101, 103101.	1.5	26
36	Optical reflectivity of GaAs nanowire arrays: Experiment and model. Journal of Applied Physics, 2012, 111, 114302.	1.1	22

Annalisa Convertino

#	Article	IF	CITATIONS
37	Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers. Nanotechnology, 2012, 23, 305602.	1.3	15
38	Low-temperature growth of In-assisted silicon nanowires. Journal of Crystal Growth, 2011, 335, 10-16.	0.7	17
39	Photovoltaic Response of Carbon Nanotube-Silicon Heterojunctions: Effect of Nanotube Film Thickness and Number of Walls. Journal of Nanoscience and Nanotechnology, 2011, 11, 9202-9207.	0.9	8
40	Poly(methyl methacrylate) nanocomposites based on TiO2 nanocrystals: Tailoring material properties towards sensing. Thin Solid Films, 2011, 519, 3931-3938.	0.8	15
41	Atomic structure of metal-free and catalyzed Si nanowires. Materials Research Society Symposia Proceedings, 2011, 1305, 1.	0.1	2
42	Single-Layer InAs Quantum Dots for High-Performance Planar Photodetectors Near 1.3 \$muhbox{m}\$. IEEE Transactions on Electron Devices, 2010, 57, 1237-1242.	1.6	1
43	Optical reflectivity from highly disordered Si nanowire films. Nanotechnology, 2010, 21, 355701.	1.3	43
44	Low-temperature, self-catalyzed growth of Si nanowires. Nanotechnology, 2010, 21, 255601.	1.3	22
45	Scanning transmission electron microscopy determination of critical InAs QD parameters from high-quality focused ion beam lamellas. Semiconductor Science and Technology, 2009, 24, 085001.	1.0	Ο
46	Morphological and compositional effects of FIB nanopatterning of multilayer metal/semiconducting devices. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 734-738.	1.3	4
47	Carrier dynamics in InAs quantum dots investigated by current transient response to quasi-resonant interband excitation. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2119-2121.	1.3	1
48	Effect of shape and surface chemistry of TiO2 colloidal nanocrystals on the organic vapor absorption capacity of TiO2/PMMA composite. Polymer, 2008, 49, 5526-5532.	1.8	22
49	Electronic structure of double stacked InAsâ^•GaAs quantum dots: Experiment and theory. Journal of Applied Physics, 2007, 102, 094314.	1.1	7
50	TiO2 colloidal nanocrystals functionalization of PMMA: A tailoring of optical properties and chemical adsorption. Sensors and Actuators B: Chemical, 2007, 126, 138-143.	4.0	56
51	PECVD of h-BN and c-BN films from boranedimethylamine as a single source precursor. Electrochimica Acta, 2005, 50, 4600-4604.	2.6	8
52	Photoelectrical Properties of 1.3μm Emitting InAs Quantum Dots in InGaAs Matrix. Acta Physica Polonica A, 2005, 107, 381-387.	0.2	1
53	Noncollinear type-II second-harmonic generation in a Al(0.3)Ga(0.7)As/Al2O3 one-dimensional photonic crystal. Applied Physics Letters, 2004, 84, 3010-3012.	1.5	8
54	High reflectivity Bragg reflectors based on a gold nanoparticle/Teflon-like composite material as a new approach to organic solvent detection. Sensors and Actuators B: Chemical, 2004, 100, 212-215.	4.0	9

ANNALISA CONVERTINO

#	Article	IF	CITATIONS
55	Growth interruption to tune the emission of InAs quantum dots embedded in InGaAs matrix in the long wavelength region. Journal of Crystal Growth, 2004, 261, 458-465.	0.7	40
56	A New Approach to Organic Solvent Detection: High-Reflectivity Bragg Reflectors Based on a Gold Nanoparticle/Teflon-like Composite Material. Advanced Materials, 2003, 15, 1103-1105.	11.1	86
57	Effect of metal clusters on the swelling of gold–fluorocarbon–polymer composite films. Applied Physics Letters, 2002, 80, 1565-1567.	1.5	22
58	High direct energy band gaps determination in In[sub x]Al[sub 1â^'x]As coherently grown on InP. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 243.	1.6	3
59	Optical properties of the LB multilayer films of 5-amino-3-octadecylimino-1,2,6,7-tetracyano-3H-pyrrolizine. Materials Science and Engineering C, 2002, 22, 401-404.	3.8	Ο
60	Structural study of InGaAs/GaAs quantum dots grown by metalorganic chemical vapor deposition for optoelectronic applications at 1.3 1⁄4m. Journal of Applied Physics, 2001, 89, 4341-4348.	1.1	41
61	Photoluminescence analysis on Teflon bulk and Teflon–like films grown by Ion-beam sputtering. Journal of Luminescence, 2000, 91, 87-90.	1.5	5
62	Wide band gap amorphous hydrogenated carbon films grown by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 356-360.	0.9	2
63	Swelling of CFx and CFx(Au) films. Journal of Applied Physics, 2000, 87, 2039-2042.	1.1	10
64	Organic multilayers as distributed Bragg reflectors. Applied Physics Letters, 1999, 75, 322-324.	1.5	30
65	Electro-optic low-voltage InGaAs/GaAs multiple quantum well modulator with organic–inorganic distributed Bragg reflector. Superlattices and Microstructures, 1999, 25, 313-317.	1.4	2
66	Organic-inorganic dual-wavelength Bragg reflector. Electronics Letters, 1999, 35, 896.	0.5	0
67	Synthesis of silicon carbide thin films by ion beam sputtering. Thin Solid Films, 1998, 335, 80-84.	0.8	21
68	Swelling in organic–inorganic multilayer systems. Applied Physics Letters, 1998, 73, 771-773.	1.5	5
69	Organic–inorganic dielectric multilayer systems as high reflectivity distributed Bragg reflectors. Applied Physics Letters, 1997, 71, 732-734.	1.5	29
70	Infrared distributed Bragg reflectors based on amorphous SiC/SiO2 heterostructures. Applied Physics Letters, 1997, 70, 2799-2800.	1.5	11
71	Lasing in ZnSe/ZnS0.18Se0.82superlattices. Physical Review B, 1996, 54, 17812-17818.	1.1	4
72	Structural and optical studies of InxGa1â^'xAs/GaAs multiple quantum wells. Journal of Applied Physics, 1996, 80, 482-489.	1.1	27

#	Article	IF	CITATIONS
73	Experimental evidence of the Coulomb interaction effects in CdS 1-x Se x quantum dots. , 1995, , .		ο
74	Magnetism as a probe for wave function localization in GaSb/AlGaSb quantum wells. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1465-1471.	0.4	0
75	Variation of the wave-function localization on the monolayer scale in GaSb quantum wells probed by magnetoluminescence. Physical Review B, 1995, 52, R11591-R11594.	1.1	12