Elaine T Alarid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6906013/publications.pdf Version: 2024-02-01

FLAINE T ALADID

#	Article	IF	CITATIONS
1	Proteasome-Mediated Proteolysis of Estrogen Receptor: A Novel Component in Autologous Down-Regulation. Molecular Endocrinology, 1999, 13, 1522-1534.	3.7	265
2	Differential Regulation of Estrogen-Inducible Proteolysis and Transcription by the Estrogen Receptor α N Terminus. Molecular and Cellular Biology, 2005, 25, 5417-5428.	2.3	97
3	Ligand-specific regulation of proteasome-mediated proteolysis of estrogen receptor-α. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E891-E898.	3.5	84
4	Proteasome-Mediated Proteolysis of Estrogen Receptor: A Novel Component in Autologous Down-Regulation. Molecular Endocrinology, 1999, 13, 1522-1534.	3.7	84
5	Standardization of Estrogen Receptor Measurement in Breast Cancer Suggests False-Negative Results Are a Function of Threshold Intensity Rather Than Percentage of Positive Cells. Journal of Clinical Oncology, 2011, 29, 2978-2984.	1.6	71
6	Increases in estrogen receptorâ€Î± concentration in breast cancer cells promote serine 118/104/106â€independent AFâ€1 transactivation and growth in the absence of estrogen. FASEB Journal, 2004, 18, 81-93.	0.5	69
7	Repression of <i>ESR1</i> through Actions of Estrogen Receptor Alpha and Sin3A at the Proximal Promoter. Molecular and Cellular Biology, 2009, 29, 4949-4958.	2.3	68
8	Lives and Times of Nuclear Receptors. Molecular Endocrinology, 2006, 20, 1972-1981.	3.7	64
9	Regulation of Estrogen Receptor <i>α</i> N-Terminus Conformation and Function by Peptidyl Prolyl Isomerase Pin1. Molecular and Cellular Biology, 2012, 32, 445-457.	2.3	64
10	Personalized in vitro cancer models to predict therapeutic response: Challenges and a framework for improvement. , 2016, 165, 79-92.		60
11	Temporal variation in estrogen receptor-α protein turnover in the presence of estrogen. Journal of Molecular Endocrinology, 2008, 40, 23-34.	2.5	57
12	Altered Target Gene Regulation Controlled by Estrogen Receptor-α Concentration. Molecular Endocrinology, 2006, 20, 291-301.	3.7	45
13	Mammary fibroblasts reduce apoptosis and speed estrogen-induced hyperplasia in an organotypic MCF7-derived duct model. Scientific Reports, 2018, 8, 7139.	3.3	35
14	Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. Journal of Molecular Endocrinology, 2015, 54, R151-R167.	2.5	34
15	The NF-κB Pathway Promotes Tamoxifen Tolerance and Disease Recurrence in Estrogen Receptor–Positive Breast Cancers. Molecular Cancer Research, 2020, 18, 1018-1027.	3.4	31
16	Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integrative Biology (United Kingdom), 2013, 5, 807.	1.3	27
17	Mammary adipose stromal cells derived from obese women reduce sensitivity to the aromatase inhibitor anastrazole in an organotypic breast model. FASEB Journal, 2019, 33, 8623-8633.	0.5	23
18	Intrinsic and Extrinsic Factors Governing the Transcriptional Regulation of ESR1. Hormones and Cancer, 2020, 11, 129-147.	4.9	22

Elaine T Alarid

#	Article	IF	CITATIONS
19	The Phosphorylated Estrogen Receptor <i>α</i> (ER) Cistrome Identifies a Subset of Active Enhancers Enriched for Direct ER-DNA Binding and the Transcription Factor GRHL2. Molecular and Cellular Biology, 2019, 39, .	2.3	20
20	Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments. Biomedical Microdevices, 2016, 18, 70.	2.8	19
21	Peptidylprolyl Isomerase Pin1 Directly Enhances the DNA Binding Functions of Estrogen Receptor α. Journal of Biological Chemistry, 2015, 290, 13749-13762.	3.4	17
22	Streamlining gene expression analysis: integration of co-culture and mRNA purification. Integrative Biology (United Kingdom), 2014, 6, 224.	1.3	14
23	Progress towards understanding heterotypic interactions in multi-culture models of breast cancer. Integrative Biology (United Kingdom), 2016, 8, 684-692.	1.3	14
24	Grainyhead-like Protein 2: The Emerging Role in Hormone-Dependent Cancers and Epigenetics. Endocrinology, 2019, 160, 1275-1288.	2.8	13
25	The Proteasome Inhibitor Bortezomib Induces an Inhibitory Chromatin Environment at a Distal Enhancer of the Estrogen Receptor-α Gene. PLoS ONE, 2013, 8, e81110.	2.5	12
26	A kinetic model identifies phosphorylated estrogen receptorâ€Î± (ERα) as a critical regulator of ERα dynamics in breast cancer. FASEB Journal, 2015, 29, 2022-2031.	0.5	10
27	17β-Estradiol and ICI182,780 Differentially Regulate STAT5 Isoforms in Female Mammary Epithelium, With Distinct Outcomes. Journal of the Endocrine Society, 2018, 2, 293-309.	0.2	9
28	Modeling chemical effects on breast cancer: the importance of the microenvironment in vitro. Integrative Biology (United Kingdom), 2020, 12, 21-33.	1.3	9
29	Selective pressure of endocrine therapy activates the integrated stress response through NFκB signaling in a subpopulation of ER positive breast cancer cells. Breast Cancer Research, 2022, 24, 19.	5.0	6
30	Bone Marrow Stromal Cells Transcriptionally Repress ESR1 but Cannot Overcome Constitutive ESR1 Mutant Activity. Endocrinology, 2019, 160, 2427-2440.	2.8	4
31	Collagen I Fibrous Substrates Modulate the Proliferation and Secretome of Estrogen Receptor-Positive Breast Tumor Cells in a Hormone-Restricted Microenvironment. ACS Biomaterials Science and Engineering, 2021, 7, 2430-2443.	5.2	4
32	Abstract P5-11-01: Identification of novel ER and ER-NFκB driven stem-like cell populations in ER+ breast cancer. Cancer Research, 2022, 82, P5-11-01-P5-11-01.	0.9	0