
Michael S Brainard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6905619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What songbirds teach us about learning. Nature, 2002, 417, 351-358.	27.8	512
2	Contributions of an avian basal ganglia–forebrain circuit to real-time modulation of song. Nature, 2005, 433, 638-643.	27.8	456
3	Interruption of a basal ganglia–forebrain circuit prevents plasticity of learned vocalizations. Nature, 2000, 404, 762-766.	27.8	401
4	Performance variability enables adaptive plasticity of †̃crystallized' adult birdsong. Nature, 2007, 450, 1240-1244.	27.8	365
5	Auditory feedback in learning and maintenance of vocal behaviour. Nature Reviews Neuroscience, 2000, 1, 31-40.	10.2	276
6	Lesions of an Avian Basal Ganglia Circuit Prevent Context-Dependent Changes to Song Variability. Journal of Neurophysiology, 2006, 96, 1441-1455.	1.8	224
7	Translating Birdsong: Songbirds as a Model for Basic and Applied Medical Research. Annual Review of Neuroscience, 2013, 36, 489-517.	10.7	194
8	Central Contributions to Acoustic Variation in Birdsong. Journal of Neuroscience, 2008, 28, 10370-10379.	3.6	142
9	Covert skill learning in a cortical-basal ganglia circuit. Nature, 2012, 486, 251-255.	27.8	137
10	Adult birdsong is actively maintained by error correction. Nature Neuroscience, 2009, 12, 927-931.	14.8	124
11	Mechanisms and time course of vocal learning and consolidation in the adult songbird. Journal of Neurophysiology, 2011, 106, 1806-1821.	1.8	102
12	Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science, 2021, 371,	12.6	101
13	Online Contributions of Auditory Feedback to Neural Activity in Avian Song Control Circuitry. Journal of Neuroscience, 2008, 28, 11378-11390.	3.6	95
14	Social Modulation of Sequence and Syllable Variability in Adult Birdsong. Journal of Neurophysiology, 2008, 99, 1700-1711.	1.8	93
15	An Avian Basal Ganglia-Forebrain Circuit Contributes Differentially to Syllable Versus Sequence Variability of Adult Bengalese Finch Song. Journal of Neurophysiology, 2009, 101, 3235-3245.	1.8	79
16	Learning the microstructure of successful behavior. Nature Neuroscience, 2011, 14, 373-380.	14.8	62
17	Contributions of the Anterior Forebrain Pathway to Vocal Plasticity. Annals of the New York Academy of Sciences, 2004, 1016, 377-394.	3.8	61
18	The Avian Basal Ganglia Are a Source of Rapid Behavioral Variation That Enables Vocal Motor Exploration. Journal of Neuroscience, 2018, 38, 9635-9647.	3.6	50

MICHAEL S BRAINARD

#	Article	IF	CITATIONS
19	Variable Sequencing Is Actively Maintained in a Well Learned Motor Skill. Journal of Neuroscience, 2012, 32, 15414-15425.	3.6	43
20	Genetic variation interacts with experience to determine interindividual differences in learned song. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 421-426.	7.1	38
21	Vocal learning promotes patterned inhibitory connectivity. Nature Communications, 2017, 8, 2105.	12.8	28
22	Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird. Neuron, 2017, 96, 1168-1177.e5.	8.1	26
23	Acetylcholine acts on songbird premotor circuitry to invigorate vocal output. ELife, 2020, 9, .	6.0	20
24	Learning is enhanced by tailoring instruction to individual genetic differences. ELife, 2019, 8, .	6.0	19
25	An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition. PLoS Computational Biology, 2015, 11, e1004471.	3.2	18
26	An automated approach to the quantitation of vocalizations and vocal learning in the songbird. PLoS Computational Biology, 2018, 14, e1006437.	3.2	17
27	Songbirds can learn flexible contextual control over syllable sequencing. ELife, 2021, 10, .	6.0	17
28	Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning. GigaScience, 2018, 7, 1-6.	6.4	14
29	Auditory-induced neural dynamics in sensory-motor circuitry predict learned temporal and sequential statistics of birdsong. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9641-9646.	7.1	13
30	Timing during transitions in Bengalese finch song: implications for motor sequencing. Journal of Neurophysiology, 2017, 118, 1556-1566.	1.8	9
31	Role of the site of synaptic competition and the balance of learning forces for Hebbian encoding of probabilistic Markov sequences. Frontiers in Computational Neuroscience, 2015, 9, 92.	2.1	4
32	Zebra finches are sensitive to combinations of temporally distributed features in a model of word recognition. Journal of the Acoustical Society of America, 2018, 144, 872-884.	1.1	4