Hind A Al-Abadleh

List of Publications by Citations

Source: https://exaly.com/author-pdf/6905140/hind-a-al-abadleh-publications-by-citations.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52 1,807 24 42 g-index

60 2,044 6.3 4.96 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
52	FT-IR Study of Water Adsorption on Aluminum Oxide Surfaces. <i>Langmuir</i> , 2003 , 19, 341-347	4	289
51	Oxide surfaces as environmental interfaces. Surface Science Reports, 2003, 52, 63-161	12.9	209
50	Interfacial acidities, charge densities, potentials, and energies of carboxylic acid-functionalized silica/water interfaces determined by second harmonic generation. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11754-5	16.4	95
49	A Knudsen Cell Study of the Heterogeneous Reactivity of Nitric Acid on Oxide and Mineral Dust Particles. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 6609-6620	2.8	88
48	Adsorption thermodynamics of p-arsanilic acid on iron (oxyhydr)oxides: in-situ ATR-FTIR studies. <i>Environmental Science & amp; Technology</i> , 2008 , 42, 1922-7	10.3	79
47	Carboxylic Acid- and Ester-Functionalized Siloxane Scaffolds on Glass Studied by Broadband Sum Frequency Generation. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18675-18682	3.4	75
46	Heterogeneous Reaction of NO2 on Hexane Soot: A Knudsen Cell and FT-IR Study. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 11926-11933	2.8	57
45	Oxide and carbonate surfaces as environmental interfaces: the importance of water in surface composition and surface reactivity. <i>Journal of Molecular Catalysis A</i> , 2005 , 228, 47-54		53
44	Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. <i>RSC Advances</i> , 2015 , 5, 45785-45811	3.7	52
43	ATR-FTIR studies on the nature of surface complexes and desorption efficiency of p-arsanilic acid on iron (oxyhydr)oxides. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 3142-7	10.3	46
42	In situ ATR-FTIR and surface complexation modeling studies on the adsorption of dimethylarsinic acid and p-arsanilic acid on iron-(oxyhydr)oxides. <i>Journal of Colloid and Interface Science</i> , 2011 , 358, 534	- 4 0 ³	42
41	Formation of Light Absorbing Soluble Secondary Organics and Insoluble Polymeric Particles from the Dark Reaction of Catechol and Guaiacol with Fe(III). <i>Environmental Science & Environmental Science</i>	10.3	38
40	Structural and mechanical properties of amorphous silicon carbonitride films prepared by vapor-transport chemical vapor deposition. <i>Surface and Coatings Technology</i> , 2009 , 204, 539-545	4.4	38
39	Chromium(VI) binding to functionalized silica/water interfaces studied by nonlinear optical spectroscopy. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11126-7	16.4	36
38	Phase transitions in calcium nitrate thin films. <i>Chemical Communications</i> , 2003 , 2796-7	5.8	36
37	Kinetic studies of chromium (VI) binding to carboxylic acid- and methyl ester-functionalized silica/water interfaces important in geochemistry. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 16852-9	3.4	35
36	Insights into the surface complexation of dimethylarsinic acid on iron (oxyhydr)oxides from ATR-FTIR studies and quantum chemical calculations. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 7802-7	10.3	34

35	Control of carboxylic acid and ester groups on chromium (VI) binding to functionalized silica/water interfaces studied by second harmonic generation. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 9691-702	3.4	33
34	Phase Transitions in Magnesium Nitrate Thin Films: A Transmission FT-IR Study of the Deliquescence and Efflorescence of Nitric Acid Reacted Magnesium Oxide Interfaces. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 10829-10839	3.4	33
33	Kinetic ATR-FTIR studies on phosphate adsorption on iron (oxyhydr)oxides in the absence and presence of surface arsenic: molecular-level insights into the ligand exchange mechanism. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 10143-9	2.8	31
32	ATR-FTIR studies on the adsorption/desorption kinetics of dimethylarsinic acid on iron-(oxyhydr)oxides. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 1596-604	2.8	28
31	DRIFTS studies on the photodegradation of tannic acid as a model for HULIS in atmospheric aerosols. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7838-47	3.6	27
30	Nonlinear optical studies of the agricultural antibiotic morantel interacting with silica/water interfaces. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15771-7	16.4	27
29	Temperature-dependent infrared and calorimetric studies on arsenicals adsorption from solution to hematite nanoparticles. <i>Langmuir</i> , 2015 , 31, 2749-60	4	24
28	Thermodynamics of dimethylarsinic acid and arsenate interactions with hydrated iron-(oxyhydr)oxide clusters: DFT calculations. <i>Environmental Science & Environmental </i>	8 ¹⁰ 4 ³	24
27	Vibrational spectroscopic characterization of some environmentally important organoarsenicals A guide for understanding the nature of their surface complexes. <i>Canadian Journal of Chemistry</i> , 2008 , 86, 942-950	0.9	24
26	Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: structures, reaction energies, and transition states. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 5667-79	2.8	23
25	Surface interactions of aromatic organoarsenical compounds with hematite nanoparticles using ATR-FTIR: kinetic studies. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 2195-204	2.8	23
24	DRIFTS studies on the role of surface water in stabilizing catechol-iron(III) complexes at the gas/solid interface. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 10368-80	2.8	22
23	Measuring Heterogeneous Uptake Coefficients of Gases on Solid Particle Surfaces with a Knudsen Cell Reactor: Complications Due to Surface Saturation and Gas Diffusion into Underlying Layers. Journal of Physical Chemistry A, 2002, 106, 1210-1219	2.8	22
22	Perspective on identifying and characterizing the processes controlling iron speciation and residence time at the atmosphere-ocean interface. <i>Marine Chemistry</i> , 2019 , 217, 103704	3.7	21
21	Spectral characterization and surface complexation modeling of low molecular weight organics on hematite nanoparticles: role of electrolytes in the binding mechanism. <i>Environmental Science: Nano</i> , 2016 , 3, 910-926	7.1	19
20	Efficient Formation of Light-Absorbing Polymeric Nanoparticles from the Reaction of Soluble Fe(III) with C4 and C6 Dicarboxylic Acids. <i>Environmental Science & Environmental </i>	10.3	17
19	DRIFTS studies on the photosensitized transformation of gallic acid by iron(III) chloride as a model for HULIS in atmospheric aerosols. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 6507-16	3.6	16
18	Effect of Oxalate and Sulfate on Iron-Catalyzed Secondary Brown Carbon Formation. <i>Environmental Science & Environmental Scien</i>	10.3	15

17	ATR-FTIR and Flow Microcalorimetry Studies on the Initial Binding Kinetics of Arsenicals at the Organic-Hematite Interface. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 5569-5579	2.8	10
16	Surface interactions of monomethylarsonic acid with hematite nanoparticles studied using ATR-FTIR: adsorption and desorption kinetics. <i>Canadian Journal of Chemistry</i> , 2015 , 93, 1297-1304	0.9	8
15	Surface water enhances the uptake and photoreactivity of gaseous catechol on solid iron(III) chloride. <i>Environmental Science & Environmental Science </i>	10.3	8
14	Trends in the frequencies of [AsOxHxII) [$x = 2II$] in selected As(V)-containing compounds investigated using quantum chemical calculations. Canadian Journal of Chemistry, 2010, 88, 65-77	0.9	8
13	Dust-Catalyzed Oxidative Polymerization of Catechol and Its Impacts on Ice Nucleation Efficiency and Optical Properties. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1127-1139	3.2	8
12	and Real-Time ATR-FTIR Temperature-Dependent Adsorption Kinetics Coupled with DFT Calculations of Dimethylarsinate and Arsenate on Hematite Nanoparticles. <i>Langmuir</i> , 2020 , 36, 4299-43	30 1 7	6
11	Rigorous quantification of statistical significance of the COVID-19 lockdown effect on air quality: The case from ground-based measurements in Ontario, Canada. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125445	12.8	6
10	Surface Water Structure and Hygroscopic Properties of Light Absorbing Secondary Organic Polymers of Atmospheric Relevance. <i>ACS Omega</i> , 2018 , 3, 15519-15529	3.9	6
9	Density functional theory calculations on the adsorption of monomethylarsonic acid onto hydrated iron (oxyhydr)oxide clusters. <i>Computational and Theoretical Chemistry</i> , 2017 , 1109, 58-63	2	5
8	Dispersion Effects on the Thermodynamics and Transition States of Dimethylarsinic Acid Adsorption on Hydrated Iron (Oxyhydr)oxide Clusters from Density Functional Theory Calculations. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 9270-9280	2.8	5
7	Dark Iron-Catalyzed Reactions in Acidic and Viscous Aerosol Systems Efficiently Form Secondary Brown Carbon. <i>Environmental Science & Enp.; Technology</i> , 2021 , 55, 209-219	10.3	2
6	Aging of atmospheric aerosols and the role of iron in catalyzing brown carbon formation. <i>Environmental Science Atmospheres</i> , 2021 , 1, 297-345		2
5	Quantum chemical calculations on solvation effects for selected photoreactive aromatic organic molecules of atmospheric relevance. <i>Computational and Theoretical Chemistry</i> , 2011 , 965, 346-352	2	1
4	Effect of aromatic ring substituents on the ability of catechol to produce brown carbon in iron(III)-catalyzed reactions. <i>Environmental Science Atmospheres</i> , 2021 , 1, 64-78		1
3	Air Quality Measurements in Kitchener, Ontario, Canada Using Multisensor Mini Monitoring Stations. <i>Atmosphere</i> , 2022 , 13, 83	2.7	О
2	Adsorption of small organic acids and polyphenols on hematite surfaces: Density Functional Theory (Ithermodynamics analysis. <i>Journal of Colloid and Interface Science</i> , 2021 , 609, 469-469	9.3	O
1	Air quality education in public schools <i>Science</i> , 2022 , 376, 589	33.3	0