Larry J Millet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/690483/publications.pdf

Version: 2024-02-01

41 papers 2,906 citations

257450
24
h-index

289244 40 g-index

43 all docs 43 docs citations

43 times ranked

4040 citing authors

#	Article	IF	CITATIONS
1	Spatial light interference microscopy (SLIM). Optics Express, 2011, 19, 1016.	3.4	608
2	Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 2018, 42, 335-352.	8.6	468
3	Measurement of adherent cell mass and growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20691-20696.	7.1	186
4	Microfluidic devices for culturing primary mammalian neurons at low densities. Lab on A Chip, 2007, 7, 987.	6.0	179
5	Patterning the differentiation of C2C12 skeletal myoblasts. Integrative Biology (United Kingdom), 2011, 3, 897.	1.3	164
6	Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab on A Chip, 2010, 10, 1525.	6.0	144
7	New perspectives on neuronal development via microfluidic environments. Trends in Neurosciences, 2012, 35, 752-761.	8.6	123
8	Dispersion-relation phase spectroscopy of intracellular transport. Optics Express, 2011, 19, 20571.	3.4	80
9	Jones phase microscopy of transparent and anisotropic samples. Optics Letters, 2008, 33, 1270.	3.3	77
10	Spatial light interference tomography (SLIT). Optics Express, 2011, 19, 19907.	3.4	71
11	Neuropeptidomics of the Supraoptic Rat Nucleus. Journal of Proteome Research, 2008, 7, 4992-5003.	3.7	59
12	Over a century of neuron culture: from the hanging drop to microfluidic devices. Yale Journal of Biology and Medicine, 2012, 85, 501-21.	0.2	59
13	Modular microfluidics for point-of-care protein purifications. Lab on A Chip, 2015, 15, 1799-1811.	6.0	58
14	Topography and refractometry of nanostructures using spatial light interference microscopy. Optics Letters, 2010, 35, 208.	3.3	55
15	Ultra-localized single cell electroporation using silicon nanowires. Lab on A Chip, 2013, 13, 336-339.	6.0	55
16	Rapid thermal lysis of cells using silicon–diamond microcantilever heaters. Lab on A Chip, 2010, 10, 1135.	6.0	53
17	Label-free intracellular transport measured by spatial light interference microscopy. Journal of Biomedical Optics, 2011, 16, 1.	2.6	40
18	Microfluidics and Metabolomics Reveal Symbiotic Bacterial–Fungal Interactions Between Mortierella elongata and Burkholderia Include Metabolite Exchange. Frontiers in Microbiology, 2019, 10, 2163.	3.5	37

#	Article	lF	Citations
19	Phase correlation imaging of unlabeled cell dynamics. Scientific Reports, 2016, 6, 32702.	3.3	36
20	Peptidomic Analyses of Mouse Astrocytic Cell Lines and Rat Primary Cultured Astrocytes. Journal of Proteome Research, 2012, 11, 3965-3973.	3.7	32
21	Micromechanical properties of hydrogels measured with MEMS resonant sensors. Biomedical Microdevices, 2013, 15, 311-319.	2.8	28
22	Pattern analysis and spatial distribution of neurons in culture. Integrative Biology (United Kingdom), 2011, 3, 1167.	1.3	27
23	Actin-driven cell dynamics probed by Fourier transform light scattering. Biomedical Optics Express, 2010, 1, 260.	2.9	26
24	Fourier Transform Light Scattering of Biological Structure and Dynamics. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 909-918.	2.9	25
25	Fourier Transform Light Scattering (FTLS) of Cells and Tissues. Journal of Computational and Theoretical Nanoscience, 2010, 7, 2501-2511.	0.4	22
26	Measuring Physical Properties of Neuronal and Glial Cells with Resonant Microsensors. Analytical Chemistry, 2014, 86, 4864-4872.	6.5	22
27	One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy. Journal of Physics Condensed Matter, 2011, 23, 374107.	1.8	21
28	Micro-patterning of mammalian cells on suspended MEMS resonant sensors for long-term growth measurements. Lab on A Chip, 2014, 14, 1401.	6.0	21
29	Direct Cellular Peptidomics of Supraoptic Magnocellular and Hippocampal Neurons in Low-Density Cocultures. ACS Chemical Neuroscience, 2010, 1, 36-48.	3.5	19
30	Characterization of Mass and Swelling of Hydrogel Microstructures using MEMS Resonant Mass Sensor Arrays. Small, 2012, 8, 2555-2562.	10.0	19
31	Increasing access to microfluidics for studying fungi and other branched biological structures. Fungal Biology and Biotechnology, 2019, 6, 1.	5.1	17
32	Accessing microfluidics through feature-based design software for 3D printing. PLoS ONE, 2018, 13, e0192752.	2.5	15
33	Material-mediated proangiogenic factor release pattern modulates quality of regenerated blood vessels. Journal of Controlled Release, 2014, 196, 363-369.	9.9	13
34	Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces. Scientific Reports, 2019, 9, 10272.	3.3	12
35	Quantitative encapsulation and retention of ²²⁷ Th and decay daughters in core–shell lanthanum phosphate nanoparticles. Nanoscale, 2020, 12, 9744-9755.	5 . 6	10
36	Separating Beads and Cells in Multi-channel Microfluidic Devices Using Dielectrophoresis and Laminar Flow. Journal of Visualized Experiments, 2011, , .	0.3	7

#	Article	IF	CITATIONS
37	Genetic Selection for Small Molecule Production in Competitive Microfluidic Droplets. ACS Synthetic Biology, 2019, 8, 1737-1743.	3.8	6
38	Hydrogel Microstructures: Characterization of Mass and Swelling of Hydrogel Microstructures using MEMS Resonant Mass Sensor Arrays (Small 16/2012). Small, 2012, 8, 2450-2450.	10.0	3
39	Nanofluidic interfaces in microfluidic networks. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 06FM01.	1.2	2
40	Identifying Candidate Biomarkers of Ionizing Radiation in Human Pulmonary Microvascular Lumens Using Microfluidicsâ€"A Pilot Study. Micromachines, 2021, 12, 904.	2.9	2
41	Microfluidics-based separation of actinium-225 from radium-225 for medical applications. Separation Science and Technology, 2019, 54, 1994-2002.	2.5	0