Yang Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6904357/publications.pdf

Version: 2024-02-01

46771 30047 9,655 212 54 89 citations h-index g-index papers 213 213 213 3217 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – A molecular dynamics simulation. Composites Part B: Engineering, 2017, 111, 261-269.	5.9	242
2	Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Computer Methods in Applied Mechanics and Engineering, 2012, 213-216, 196-205.	3.4	241
3	Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Computational Materials Science, 2009, 47, 409-417.	1.4	224
4	Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Engineering Structures, 2013, 56, 698-708.	2.6	222
5	Mechanical properties of bilayer graphene sheets coupled by sp bonding. Carbon, 2011, 49, 4511-4517.	5.4	219
6	Research on thick plate vibration: a literature survey. Journal of Sound and Vibration, 1995, 180, 163-176.	2.1	214
7	Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Computer Methods in Applied Mechanics and Engineering, 2017, 319, 175-193.	3.4	214
8	Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Composites Part B: Engineering, 2017, 119, 67-78.	5.9	201
9	Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm. International Journal for Numerical Methods in Engineering, 2002, 55, 913-946.	1.5	188
10	Nonlinear vibration of edge cracked functionally graded Timoshenko beams. Journal of Sound and Vibration, 2009, 324, 962-982.	2.1	166
11	The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. International Journal of Mechanical Sciences, 2001, 43, 1731-1746.	3.6	160
12	Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Applied Mathematical Modelling, 2014, 38, 3741-3754.	2.2	159
13	Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Composite Structures, 2017, 170, 80-90.	3.1	158
14	Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions. Computers and Structures, 1993, 49, 1-29.	2.4	150
15	Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, 2008, 312, 166-181.	2.1	147
16	A NOVEL APPROACH FOR THE ANALYSIS OF HIGH-FREQUENCY VIBRATIONS. Journal of Sound and Vibration, 2002, 257, 207-246.	2.1	145
17	Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Composites Part B: Engineering, 2018, 136, 177-186.	5.9	145
18	Discrete singular convolution for the prediction of high frequency vibration of plates. International Journal of Solids and Structures, 2002, 39, 65-88.	1.3	142

#	Article	IF	Citations
19	Flexural Vibration and Elastic Buckling of a Cracked Timoshenko Beam Made of Functionally Graded Materials. Mechanics of Advanced Materials and Structures, 2009, 16, 488-502.	1.5	142
20	Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations. Engineering Structures, 2017, 140, 89-97.	2.6	132
21	Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments. Composite Structures, 2017, 182, 447-456.	3.1	131
22	Effect of Covalent Functionalization on Thermal Transport across Graphene–Polymer Interfaces. Journal of Physical Chemistry C, 2015, 119, 12731-12738.	1.5	126
23	Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Composites Part B: Engineering, 2014, 67, 50-61.	5.9	125
24	On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. International Journal of Engineering Science, 2009, 47, 131-140.	2.7	123
25	Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations. Thin-Walled Structures, 2017, 118, 229-237.	2.7	122
26	Vibration Of Thick Skew Plates Based On Mindlin Shear Deformation Plate Theory. Journal of Sound and Vibration, 1993, 168, 39-69.	2.1	119
27	Recent Studies on Buckling of Carbon Nanotubes. Applied Mechanics Reviews, 2010, 63, .	4.5	117
28	Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment. Composites Part B: Engineering, 2013, 52, 311-322.	5.9	116
29	Buckling of thick skew plates. International Journal for Numerical Methods in Engineering, 1993, 36, 1299-1310.	1.5	113
30	Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology, 2009, 20, 395707.	1.3	113
31	Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments. Thin-Walled Structures, 2018, 124, 151-160.	2.7	111
32	Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Composite Structures, 2014, 111, 291-300.	3.1	110
33	DSC analysis of free-edged beams by an iteratively matched boundary method. Journal of Sound and Vibration, 2005, 284, 487-493.	2.1	107
34	Thermal conductivity of defective graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3668-3672.	0.9	103
35	Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations. International Journal of Mechanical Sciences, 1994, 36, 311-316.	3.6	102
36	Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dynamics, 2017, 90, 899-914.	2.7	97

3

#	Article	IF	CITATIONS
37	DSC-Ritz method for the free vibration analysis of Mindlin plates. International Journal for Numerical Methods in Engineering, 2005, 62, 262-288.	1.5	95
38	Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations. Composite Structures, 2015, 123, 383-392.	3.1	89
39	Plate vibration under irregular internal supports. International Journal of Solids and Structures, 2002, 39, 1361-1383.	1.3	83
40	Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Composite Structures, 2011, 93, 1683-1691.	3.1	80
41	Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments. Computer Methods in Applied Mechanics and Engineering, 2018, 330, 64-82.	3.4	78
42	Buckling of rectangular mindlin plates with internal line supports. International Journal of Solids and Structures, 1993, 30, 1-17.	1.3	67
43	Analytical buckling solutions for mindlin plates involving free edges. International Journal of Mechanical Sciences, 1996, 38, 1127-1138.	3.6	67
44	Elastic/plastic buckling of thick plates. International Journal of Solids and Structures, 2001, 38, 8617-8640.	1.3	67
45	Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments. International Journal of Mechanical Sciences, 2018, 135, 398-409.	3.6	66
46	NUMERICAL ANALYSIS ON NONLINEAR FREE VIBRATION OF CARBON NANOTUBE REINFORCED COMPOSITE BEAMS. International Journal of Structural Stability and Dynamics, 2014, 14, 1350056.	1.5	65
47	Local adaptive differential quadrature for free vibration analysis of cylindrical shells with various boundary conditions. International Journal of Mechanical Sciences, 2006, 48, 1126-1138.	3.6	64
48	Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications. International Journal for Numerical Methods in Engineering, 2002, 55, 947-971.	1.5	63
49	Nonlinear bending of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Engineering Structures, 2014, 80, 163-172.	2.6	63
50	Exact solutions for buckling and vibration of stepped rectangular Mindlin plates. International Journal of Solids and Structures, 2004, 41, 279-294.	1.3	62
51	Buckling and Vibration of Thick Laminates on Pasternak Foundations. Journal of Engineering Mechanics - ASCE, 1996, 122, 54-63.	1.6	59
52	EXACT BUCKLING AND VIBRATION SOLUTIONS FOR STEPPED RECTANGULAR PLATES. Journal of Sound and Vibration, 2002, 250, 503-517.	2.1	57
53	Exact solutions for vibration of cylindrical shells with intermediate ring supports. International Journal of Mechanical Sciences, 2002, 44, 1907-1924.	3.6	57
54	A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes. Carbon, 2010, 48, 4100-4108.	5.4	55

#	Article	IF	CITATIONS
55	Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments. Composites Part B: Engineering, 2018, 141, 148-157.	5.9	54
56	VIBRATION ANALYSIS OF RECTANGULAR MINDLIN PLATES RESTING ON ELASTIC EDGE SUPPORTS. Journal of Sound and Vibration, 1997, 204, 1-16.	2.1	53
57	Buckling solutions for Mindlin plates of various shapes. Engineering Structures, 1994, 16, 119-127.	2.6	50
58	Exact solutions for vibration of stepped circular cylindrical shells. Journal of Sound and Vibration, 2007, 299, 948-964.	2.1	50
59	Formulation of Mindlin-Engesser model for stiffened plate vibration. Computer Methods in Applied Mechanics and Engineering, 1995, 120, 339-353.	3.4	49
60	Buckling of defective carbon nanotubes. Journal of Applied Physics, 2009, 106, .	1.1	49
61	Nonlinear response of nanotube-reinforced composite cylindrical panels subjected to combined loadings and resting on elastic foundations. Composite Structures, 2015, 131, 939-950.	3.1	48
62	Crack identification of functionally graded beams using continuous wavelet transform. Composite Structures, 2019, 210, 473-485.	3.1	48
63	Nonlinear forced vibration of FG-GRC laminated plates resting on visco-Pasternak foundations. Composite Structures, 2019, 209, 443-452.	3.1	48
64	Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations. International Journal of Mechanical Sciences, 2003, 45, 1229-1244.	3.6	47
65	POSTBUCKLING OF NANO RODS/TUBES BASED ON NONLOCAL BEAM THEORY. International Journal of Applied Mechanics, 2009, 01, 259-266.	1.3	47
66	Vortex-induced vibration (VIV) of a circular cylinder in combined steady and oscillatory flow. Ocean Engineering, 2013, 73, 83-95.	1.9	45
67	Transverse Vibration of Thick Annular Sector Plates. Journal of Engineering Mechanics - ASCE, 1993, 119, 1579-1599.	1.6	44
68	Low-velocity impact response of FG-GRC laminated beams resting on visco-elastic foundations. International Journal of Mechanical Sciences, 2018, 141, 117-126.	3.6	43
69	Vibration of Rectangular Mindlin Plates with Intermediate Stiffeners. Journal of Vibration and Acoustics, Transactions of the ASME, 1994, 116, 529-535.	1.0	42
70	Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations. Composites Part B: Engineering, 2018, 144, 184-194.	5.9	42
71	Flexural vibration of shear deformable circular and annular plates on ring supports. Computer Methods in Applied Mechanics and Engineering, 1993, 110, 301-315.	3.4	41
72	Levy solutions for vibration of multi-span rectangular plates. International Journal of Mechanical Sciences, 2002, 44, 1195-1218.	3.6	41

#	Article	IF	CITATIONS
73	Exact buckling solutions for composite laminates: proper free edge conditions under in-plane loadings. Acta Mechanica, 1996, 117, 115-128.	1.1	40
74	Free vibration of isosceles triangular mindlin plates. International Journal of Mechanical Sciences, 1993, 35, 89-102.	3.6	38
75	Free vibration analysis of stepped circular Mindlin plates. Journal of Sound and Vibration, 2005, 280, 633-655.	2.1	38
76	Axisymmetric Buckling of Circular Mindlin Plates with Ring Supports. Journal of Structural Engineering, 1993, 119, 782-793.	1.7	37
77	Matched interface and boundary (MIB) method for the vibration analysis of plates. Communications in Numerical Methods in Engineering, 2009, 25, 923-950.	1.3	37
78	Temperature-Dependent Mechanical Properties of Graphene/Cu Nanocomposites with In-Plane Negative Poisson's Ratios. Research, 2020, 2020, 5618021.	2.8	37
79	Accurate analytical perturbation approach for large amplitude vibration of functionally graded beams. International Journal of Non-Linear Mechanics, 2012, 47, 473-480.	1.4	34
80	Large amplitude vibration of doubly curved FG-GRC laminated panels in thermal environments. Nanotechnology Reviews, 2019, 8, 467-483.	2.6	34
81	Effect of negative Poisson's ratio on the post-buckling behavior of FG-GRMMC laminated plates in thermal environments. Composite Structures, 2020, 253, 112731.	3.1	33
82	Vibration of open circular cylindrical shells with intermediate ring supports. International Journal of Solids and Structures, 2006, 43, 3705-3722.	1.3	32
83	DSC ANALYSIS FOR BUCKLING AND VIBRATION OF RECTANGULAR PLATES WITH ELASTICALLY RESTRAINED EDGES AND LINEARLY VARYING IN-PLANE LOADING. International Journal of Structural Stability and Dynamics, 2009, 09, 511-531.	1.5	32
84	Formation of carbon nanoscrolls from graphene nanoribbons: A molecular dynamics study. Computational Materials Science, 2015, 96, 300-305.	1.4	31
85	Thermal postbuckling behavior of FG-GRC laminated cylindrical panels with temperature-dependent properties. Composite Structures, 2019, 211, 433-442.	3.1	31
86	Mindlin Plate Buckling with Prebuckling Inâ€Plane Deformation. Journal of Engineering Mechanics - ASCE, 1993, 119, 1-18.	1.6	30
87	A global approach for vibration of thick trapezoidal plates. Computers and Structures, 1994, 53, 83-92.	2.4	30
88	DSC-element method for free vibration analysis of rectangular Mindlin plates. International Journal of Mechanical Sciences, 2010, 52, 548-560.	3.6	30
89	Buckling of Nonlocal Columns with Allowance for Selfweight. Journal of Engineering Mechanics - ASCE, 2016, 142, .	1.6	30
90	Vibration Analysis of Corner Supported Mindlin Plates of Arbitrary Shape Using the Lagrange Multiplier Method. Journal of Sound and Vibration, 1994, 173, 457-470.	2.1	29

#	Article	IF	Citations
91	A novel technique for nonlinear dynamic instability analysis of FG-GRC laminated plates. Thin-Walled Structures, 2019, 139, 389-397.	2.7	29
92	Natural vibration of rectangular plates with an internal line hinge using the first order shear deformation plate theory. Journal of Sound and Vibration, 2003, 263, 285-297.	2.1	28
93	Local buckling of carbon nanotubes under bending. Applied Physics Letters, 2007, 91, .	1.5	28
94	Buckling and postbuckling of anisotropic laminated cylindrical shells under combined axial compression and torsion. Composite Structures, 2008, 84, 375-386.	3.1	28
95	Postbuckling of pressure-loaded nanotube-reinforced composite doubly curved panels resting on elastic foundations in thermal environments. International Journal of Mechanical Sciences, 2016, 107, 225-234.	3.6	28
96	Temperature-dependent negative Poisson's ratio of monolayer graphene: Prediction from molecular dynamics simulations. Nanotechnology Reviews, 2019, 8, 415-421.	2.6	27
97	Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties. Meccanica, 2019, 54, 283-297.	1.2	27
98	Torsional postbuckling behavior of FG-GRC laminated cylindrical shells in thermal environments. Thin-Walled Structures, 2019, 135, 560-574.	2.7	26
99	Nonlinear Vibration of Thermally Postbuckled FG-GRC Laminated Beams Resting on Elastic Foundations. International Journal of Structural Stability and Dynamics, 2019, 19, 1950051.	1.5	26
100	Vibration of Mindlin Plates on Point Supports Using Constraint Functions. Journal of Engineering Mechanics - ASCE, 1994, 120, 499-513.	1.6	25
101	Evaluation of modal stress resultants in freely vibrating plates. International Journal of Solids and Structures, 2001, 38, 6525-6558.	1.3	25
102	Buckling And Vibration Of Annular Mindlin Plates With Internal Concentric Ring Supports Subject To In-Plane Radial Pressure. Journal of Sound and Vibration, 1994, 177, 689-707.	2.1	24
103	Buckling of skew mindlin plates subjected to in-plane shear loadings. International Journal of Mechanical Sciences, 1995, 37, 1089-1101.	3.6	24
104	DSC-Ritz element method for vibration analysis of rectangular Mindlin plates with mixed edge supports. European Journal of Mechanics, A/Solids, 2010, 29, 619-628.	2.1	24
105	FREE VIBRATION AND BUCKLING ANALYSIS OF HIGHLY SKEWED PLATES BY LEAST SQUARES-BASED FINITE DIFFERENCE METHOD. International Journal of Structural Stability and Dynamics, 2010, 10, 225-252.	1.5	24
106	Single-equation yield surfaces for monosymmetric and asymmetric sections. Engineering Structures, 1991, 13, 366-370.	2.6	23
107	Vibration of stiffened skew Mindlin plates. Acta Mechanica, 1995, 112, 11-28.	1.1	23
108	Vortex-induced vibration of four cylinders in an in-line square configuration. Physics of Fluids, 2016, 28, .	1.6	23

#	Article	IF	CITATIONS
109	Nonlinear Dynamics of Temperature-Dependent FG-GRC Laminated Beams Resting on Visco-Pasternak Foundations. International Journal of Structural Stability and Dynamics, 2020, 20, 2050012.	1.5	23
110	Assessment of the effect of negative Poisson's ratio on the thermal postbuckling of temperature dependent FG-GRMMC laminated cylindrical shells. Computer Methods in Applied Mechanics and Engineering, 2021, 376, 113664.	3.4	23
111	Transverse vibration of thick rectangular plates—II. Inclusion of oblique internal line supports. Computers and Structures, 1993, 49, 31-58.	2.4	22
112	Effect of negative poisson's ratio on the axially compressed postbuckling behavior of FG-GRMMC laminated cylindrical panels on elastic foundations. Thin-Walled Structures, 2020, 157, 107090.	2.7	22
113	Exact Solutions for Vibration of Multi-Span Rectangular Mindlin Plates. Journal of Vibration and Acoustics, Transactions of the ASME, 2002, 124, 545-551.	1.0	21
114	Transverse vibration of thick rectangular platesâ€"IV. Influence of isotropic in-plane pressure. Computers and Structures, 1993, 49, 69-78.	2.4	20
115	Vibration of Laminated Plates Having Elastic Edge Flexibilities. Journal of Engineering Mechanics - ASCE, 1997, 123, 1012-1019.	1.6	20
116	Relationships between Buckling Loads of Kirchhoff, Mindlin, and Reddy Polygonal Plates on Pasternak Foundation. Journal of Engineering Mechanics - ASCE, 1997, 123, 1134-1137.	1.6	20
117	Dynamic Instability of Nanorods/Nanotubes Subjected to an End Follower Force. Journal of Engineering Mechanics - ASCE, 2010, 136, 1054-1058.	1.6	20
118	Vibration of thermally postbuckled FG-GRC laminated plates resting on elastic foundations. JVC/Journal of Vibration and Control, 2019, 25, 1507-1520.	1.5	20
119	Vibration of annular sector mindlin plates with internal radial line and circumferential arc supports. Journal of Sound and Vibration, 1995, 183, 401-419.	2.1	19
120	A Nonlinear Van Der Waals Force Model for Multiwalled Carbon Nanotubes Modeled by a Nested System of Cylindrical Shells. Journal of Applied Mechanics, Transactions ASME, 2010, 77, .	1.1	19
121	Buckling Solutions of Rectangular Mindlin Plates under Uniform Shear. Journal of Engineering Mechanics - ASCE, 1994, 120, 2462-2470.	1.6	18
122	Mode shapes and stress-resultants of circular Mindlin plates with free edges. Journal of Sound and Vibration, 2004, 276, 511-525.	2.1	18
123	Vibration of Open Cylindrical Shells with Stepped Thickness Variations. Journal of Engineering Mechanics - ASCE, 2006, 132, 780-784.	1.6	18
124	Nonlocal shear deformable shell model for thermal postbuckling of axially compressed double-walled carbon nanotubes. Philosophical Magazine, 2010, 90, 3189-3214.	0.7	18
125	BUCKLING OF NANO-RINGS/ARCHES BASED ON NONLOCAL ELASTICITY. International Journal of Applied Mechanics, 2012, 04, 1250025.	1.3	18
126	An effective method for the sliding frictional contact of a conducting cylindrical punch on FGPMs. International Journal of Solids and Structures, 2018, 141-142, 127-136.	1.3	18

#	Article	IF	CITATIONS
127	Free vibration and damage identification of cracked functionally graded plates. Composite Structures, 2020, 250, 112517.	3.1	18
128	BUCKLING OF RECTANGULAR PLATES WITH INTERNAL HINGE. International Journal of Structural Stability and Dynamics, 2001, 01, 169-179.	1.5	17
129	Shear buckling of rippled graphene by molecular dynamics simulation. Materials Today Communications, 2015, 3, 149-155.	0.9	17
130	Vibration of two elastically mounted cylinders of different diameters in oscillatory flow. Applied Ocean Research, 2017, 69, 173-190.	1.8	17
131	Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis. Computational Materials Science, 2018, 150, 107-120.	1.4	17
132	Stability of Skew Mindlin Plates under Isotropic Inâ€Plane Pressure. Journal of Engineering Mechanics - ASCE, 1993, 119, 393-401.	1.6	16
133	Application of a generalized Senator–Bapat perturbation technique to nonlinear dynamical systems with an irrational restoring force. Computers and Mathematics With Applications, 2010, 60, 2078-2086.	1.4	16
134	Study on asymptotic analytical solutions using HAM for strongly nonlinear vibrations of a restrained cantilever beam with an intermediate lumped mass. Numerical Algorithms, 2011, 58, 293-314.	1.1	16
135	Effect of negative Poisson's ratio on the postbuckling behavior of axially compressed FG-GRMMC laminated cylindrical shells surrounded by an elastic medium. European Journal of Mechanics, A/Solids, 2021, 88, 104231.	2.1	16
136	Buckling of Restrained Columns with Shear Deformation and Axial Shortening. Journal of Engineering Mechanics - ASCE, 1991, 117, 1973-1989.	1.6	15
137	Vibration of circular and annular Mindlin plates with internal ring stiffeners. Journal of the Acoustical Society of America, 1996, 100, 3696-3705.	0.5	15
138	On Asymptotic Analysis for Large Amplitude Nonlinear Free Vibration of Simply Supported Laminated Plates. Journal of Vibration and Acoustics, Transactions of the ASME, 2009, 131, .	1.0	15
139	Thermo-mechanical postbuckling analysis of sandwich cylindrical shells with functionally graded auxetic GRMMC core surrounded by an elastic medium. Thin-Walled Structures, 2022, 171, 108755.	2.7	15
140	A non-discrete approach for analysis of plates with multiple subdomains. Engineering Structures, 2002, 24, 563-575.	2.6	14
141	Thermomechanical postbuckling of unilaterally constrained shear deformable laminated plates with temperature-dependent properties. International Journal of Non-Linear Mechanics, 2006, 41, 1161-1173.	1.4	14
142	Three-dimensional numerical simulations of vortex-induced vibrations of tapered circular cylinders. Applied Ocean Research, 2016, 60, 1-11.	1.8	14
143	Axisymmetric torsional fretting contact between a spherical punch and an FGPM coating. Applied Mathematical Modelling, 2017, 52, 576-589.	2.2	14
144	Vibrational power flow analysis of cracked functionally graded beams. Thin-Walled Structures, 2020, 150, 106626.	2.7	14

#	Article	IF	CITATIONS
145	Effect of negative Poisson's ratio on the postbuckling behavior of pressure-loaded FG-GRMMC laminated cylindrical shells. Engineering Structures, 2021, 243, 112458.	2.6	14
146	Exact solutions for axisymmetric bending of continuous annular plates. Computers and Structures, 1997, 63, 455-464.	2.4	13
147	BUCKLING OF STANDING VERTICAL PLATES UNDER BODY FORCES. International Journal of Structural Stability and Dynamics, 2002, 02, 151-161.	1.5	13
148	Exact Buckling Solutions For Rectangular Plates Under Intermediate and End Uniaxial Loads. Journal of Engineering Mechanics - ASCE, 2003, 129, 835-838.	1.6	13
149	Plastic buckling of rectangular plates subjected to intermediate and end inplane loads. International Journal of Solids and Structures, 2004, 41, 4279-4297.	1.3	13
150	ON INSTABILITY OF SINGLE-WALLED CARBON NANOTUBES WITH A VACANCY DEFECT. International Journal of Structural Stability and Dynamics, 2008, 08, 357-366.	1.5	13
151	Examination of thermal postbuckling behavior of temperature dependent FG-GRMMC laminated plates with in-plane negative Poisson's ratio. Thin-Walled Structures, 2021, 163, 107801.	2.7	13
152	Examination of thermal postbuckling of temperature dependent FG-GRMMC laminated beams with negative Poisson's ratio on elastic foundations. Composite Structures, 2021, 272, 114066.	3.1	13
153	Buckling of triangular Mindlin plates under isotropic inplane compression. Acta Mechanica, 1994, 102, 123-135.	1.1	12
154	Navier's solution for laminated plate buckling with prebuckling in-plane deformation. International Journal of Solids and Structures, 1996, 33, 1921-1937.	1.3	12
155	Deducing Buckling Loads of Sectorial Mindlin Plates from Kirchhoff Plates. Journal of Engineering Mechanics - ASCE, 1999, 125, 596-598.	1.6	12
156	Vibration of circular Mindlin plates with concentric elastic ring supports. International Journal of Mechanical Sciences, 2003, 45, 497-517.	3.6	12
157	Buckling of Graphene Embedded in Polymer Matrix Under Compression. International Journal of Structural Stability and Dynamics, 2015, 15, 1540016.	1.5	12
158	The axisymmetric torsional contact problem of a functionally graded piezoelectric coated half-space. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 406-414.	1.5	12
159	POSTBUCKLING OF PRESSURE-LOADED PIEZOLAMINATED CYLINDRICAL SHELLS WITH TEMPERATURE DEPENDENT PROPERTIES. International Journal of Structural Stability and Dynamics, 2007, 07, 1-22.	1.5	11
160	Bending behavior of double-walled carbon nanotubes with <i>sp3</i> interwall bonds. Journal of Applied Physics, 2011, 109, .	1.1	11
161	Transverse vibration of thick rectangular plates—III. Effects of multiple eccentric internal ring supports. Computers and Structures, 1993, 49, 59-67.	2.4	10
162	Vibration of Triangular Mindlin Plates Subject to Isotropic In-Plane Stresses. Journal of Vibration and Acoustics, Transactions of the ASME, 1994, 116, 61-66.	1.0	10

#	Article	IF	Citations
163	Buckling of triangular plates with elastic edge constraints. Acta Mechanica, 2002, 156, 63-77.	1.1	10
164	Ritz Buckling Analysis of Rectangular Plates with Internal Hinge. Journal of Engineering Mechanics - ASCE, 2003, 129, 683-688.	1.6	10
165	Stability criteria for rectangular plates subjected to intermediate and end inplane loads. Thin-Walled Structures, 2004, 42, 119-136.	2.7	10
166	On the influence of the unilateral damage behaviour in the stability of cracked beam/columns. Engineering Fracture Mechanics, 2010, 77, 1467-1478.	2.0	10
167	Flexural Vibration Of Skew Mindlin Plates With Oblique Internal Line Supports. Journal of Sound and Vibration, 1994, 178, 535-551.	2.1	9
168	Optimal locations of point supports in plates for maximum fundamental frequency. Structural Optimization, 1996, 11, 170-177.	0.7	9
169	Exact vibration solutions for circular Mindlin plates with multiple concentric ring supports. International Journal of Solids and Structures, 2002, 39, 6081-6102.	1.3	9
170	Tunable Positive/Negative Young's Modulus in Grapheneâ€Based Metamaterials. Advanced Theory and Simulations, 2021, 4, 2000130.	1.3	9
171	Tension buckling of graphene: A new phenotype. Solid State Communications, 2014, 192, 20-23.	0.9	8
172	Compressive Buckling of Rippled Graphene via Molecular Dynamics Simulations. International Journal of Structural Stability and Dynamics, 2016, 16, 1550071.	1.5	8
173	Elastic buckling of nanoplates based on general third-order shear deformable plate theory including both size effects and surface effects. International Journal of Mechanics and Materials in Design, 2021, 17, 521-543.	1.7	8
174	Optimal locations of point supports in laminated rectangular plates for maximum fundamental frequency. Structural Engineering and Mechanics, 1997, 5, 691-703.	1.0	8
175	Shear buckling of simply supported skew Mindlin plates. AIAA Journal, 1995, 33, 377-378.	1.5	7
176	Exact Solutions for Buckling of Multispan Rectangular Plates. Journal of Engineering Mechanics - ASCE, 2003, 129, 181-187.	1.6	6
177	Three-Dimensional Numerical Simulations of Vortex-Induced Vibrations of a Circular Cylinder in Oscillatory Flow. Journal of Waterway, Port, Coastal and Ocean Engineering, 2017, 143, .	0.5	6
178	OPTIMAL DESIGN OF INTERNAL RING SUPPORT FOR RECTANGULAR PLATES AGAINST VIBRATION OR BUCKLING. Journal of Sound and Vibration, 1996, 193, 545-554.	2.1	5
179	Buckling of intermediate ring supported cylindrical shells under axial compression. Thin-Walled Structures, 2005, 43, 427-443.	2.7	5
180	Higher-order approximate solutions for nonlinear vibration of a constant-tension string. Journal of Sound and Vibration, 2008, 317, 440-448.	2.1	5

#	Article	IF	CITATIONS
181	Vibration Analysis of Carbon Nanotube Reinforced Composite Plates. Applied Mechanics and Materials, 2014, 553, 681-686.	0.2	5
182	Buckling of rectangular plates with mixed edge supports. Structural Engineering and Mechanics, 2002, 14, 401-416.	1.0	5
183	Application of Trefftz theory in thin-plate buckling with in-plane pre-buckling deformations. International Journal of Mechanical Sciences, 1992, 34, 681-688.	3.6	4
184	FORTRAN subroutines for mathematical operations on polynomial functions. Computers and Structures, 1995, 56, 541-551.	2.4	4
185	BUCKLING AND VIBRATION OF STEPPED, SYMMETRIC CROSS-PLY LAMINATED RECTANGULAR PLATES. International Journal of Structural Stability and Dynamics, 2001, 01, 385-408.	1.5	4
186	Buckling of a Thin Circular Plate Loaded by In-Plane Gravity. Journal of Applied Mechanics, Transactions ASME, 2005, 72, 296-298.	1.1	4
187	Application of the DSC-Element method to flexural vibration of skew plates with continuous and discontinuous boundaries. Thin-Walled Structures, 2011, 49, 1080-1090.	2.7	4
188	AXISYMMETRIC VIBRATION OF CYLINDRICAL SHELLS WITH INTERMEDIATE RING SUPPORTS. International Journal of Structural Stability and Dynamics, 2003, 03, 35-53.	1.5	3
189	Buckling of super ellipsoidal shells under uniform pressure. IES Journal Part A: Civil and Structural Engineering, 2008, 1, 218-225.	0.4	3
190	Plastic-Buckling of Rectangular Plates under Combined Uniaxial and Shear Stresses. Journal of Engineering Mechanics - ASCE, 2009, 135, 892-895.	1.6	3
191	Damage detection of circular cylindrical shells by Ritz method. Journal of Physics: Conference Series, 2011, 305, 012117.	0.3	3
192	Buckling and Vibration of Elastically Restrained Standing Vertical Plates. Journal of Vibration and Acoustics, Transactions of the ASME, 2012, 134, .	1.0	3
193	Use of the Extreme Value Analysis in Determining Annual Probability of Exceedance for Bushfire Protection Design. Fire Safety Science, 2014, 11, 1379-1392.	0.3	3
194	Benchmark vibration solutions for regular polygonal Mindlin plates. Journal of the Acoustical Society of America, 1995, 97, 2866-2871.	0.5	2
195	Mindlin Plate Theory and Ritz Method. , 1998, , 5-26.		2
196	Buckling and spanning capacity of cantilevered vertical plates under body forces. IES Journal Part A: Civil and Structural Engineering, 2008, 1, 116-122.	0.4	2
197	Vibration Analysis of Mindlin Plates with Cracks by MLSElement Method. Procedia Engineering, 2011, 14, 1637-1644.	1.2	2
198	Nanoscale variation in energy dissipation in austenitic shape memory alloys in ultimate loading cycles. Journal of Intelligent Material Systems and Structures, 2015, 26, 2411-2417.	1.4	2

#	Article	IF	CITATIONS
199	Finite element modelling of chain-die forming for ultra-high strength steel. AIP Conference Proceedings, 2017, , .	0.3	2
200	Postbuckling of pressure-loaded FG-GRC laminated cylindrical panels resting on elastic foundations in thermal environments. European Physical Journal Plus, 2019, 134, 1.	1.2	2
201	DISCRETE SINGULAR CONVOLUTION FOR PLATE VIBRATION ANALYSIS., 2002, , .		1
202	Vibration Analysis of Plates by MLS-Element Method. , 2010, , .		1
203	A Molecular Dynamics Investigaation of the Torsional Responses of Defective Single-Walled Carbon Nanotubes. Procedia Engineering, 2011, 14, 1307-1311.	1.2	1
204	Hypothesis on Phase Transition Nucleation and Propagation in Polycrystalline NiTi shape Memory Alloys under Nanoscale Compressive Loading. Materials Today: Proceedings, 2016, 3, 708-714.	0.9	1
205	Numerical simulation on chain-die forming of an AHSS top-hat section. AIP Conference Proceedings, 2018, , .	0.3	1
206	OPTIMIZATION ON VIBRATION OF RECTANGULAR PLATES AGAINST INTERNAL POINT SUPPORTS. , 2002, , .		0
207	BUCKLING OF TRIANGULAR PLATES WITH ELASTIC EDGE SUPPORTS. , 2002, , .		O
208	Vibrations of plates with abrupt changes in properties. , 2007, , 254-274.		0
209	Parametric Instability of Functionally Graded Timoshenko Beams with an Open Edge Crack. , 2010, , .		O
210	Case Studies on Chain-die Forming for AHSS. Journal of Physics: Conference Series, 2018, 1063, 012174.	0.3	0
211	EXACT SOLUTIONS FOR BUCKLING OF MULTI-SPAN RECTANGULAR PLATES. , 2002, , .		0
212	Vibration Analysis of Rectangular Mindlin Plates with Mixed Edge Supports. , 0, , .		0