
Giuseppe Ingarao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6904233/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Outlining the Limits of Friction Stir Consolidation as Used as an Aluminum Alloys Recycling Approach. Smart Innovation, Systems and Technologies, 2022, , 169-180.	0.5	0
2	A novel approach to enhance mechanical properties during recycling of aluminum alloy scrap through friction stir consolidation. International Journal of Advanced Manufacturing Technology, 2022, 119, 1989-2005.	1.5	7
3	Manufacturing processes as material and energy efficiency strategies enablers: The case of Single Point Incremental Forming to reshape end-of-life metal components. CIRP Journal of Manufacturing Science and Technology, 2021, 32, 145-153.	2.3	12
4	Geometrical deviation of end-of-life parts as a consequence of reshaping by single point incremental forming. International Journal of Advanced Manufacturing Technology, 2021, 115, 1579-1588.	1.5	2
5	An energy efficiency analysis of Single Point Incremental Forming as an Approach for Sheet Metal Based Component Reuse. Procedia CIRP, 2020, 90, 540-545.	1.0	3
6	Uncovering Technological and Environmental Potentials of Aluminum Alloy Scraps Recycling Through Friction Stir Consolidation. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 955-964.	2.7	18
7	A novel linear friction welding based approach for sheet-bulk joining. AIP Conference Proceedings, 2019, , .	0.3	0
8	Benchmarking the sustainable manufacturing paradigm via automatic analysis and clustering of scientific literature: A perspective from Italian technologists. Procedia Manufacturing, 2019, 33, 153-159.	1.9	4
9	Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization. Journal of Manufacturing Processes, 2019, 43, 63-69.	2.8	38
10	An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture. International Journal of Advanced Manufacturing Technology, 2019, 100, 3013-3024.	1.5	9
11	Environmental modelling of aluminium based components manufacturing routes: Additive manufacturing versus machining versus forming. Journal of Cleaner Production, 2018, 176, 261-275.	4.6	104
12	Influence of Materialâ€Related Aspects of Additive and Subtractive Tiâ€6Alâ€4V Manufacturing on Energy Demand and Carbon Dioxide Emissions. Journal of Industrial Ecology, 2017, 21, S191.	2.8	57
13	Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015. Journal of Manufacturing Processes, 2017, 27, 37-62.	2.8	184
14	Tuning Decision Support Tools for Environmentally Friendly Manufacturing Approach Selection. Smart Innovation, Systems and Technologies, 2017, , 647-655.	0.5	2
15	Analysis of Electrical Energy Demands in Friction Stir Welding of Aluminum Alloys. Procedia Engineering, 2017, 183, 206-212.	1.2	19
16	Towards criteria for sustainable process selection: On the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. Journal of Cleaner Production, 2017, 144, 57-68.	4.6	80
17	Manufacturing strategies for efficiency in energy and resources use: The role of metal shaping processes. Journal of Cleaner Production, 2017, 142, 2872-2886.	4.6	65
18	Assessment of Cost and Energy Requirements of Electron Beam Melting (EBM) and Machining Processes. Smart Innovation, Systems and Technologies, 2017, , 723-735.	0.5	7

GIUSEPPE INGARAO

#	Article	IF	CITATIONS
19	On the Impact of Recycling Strategies on Energy Demand and CO2 Emissions When Manufacturing Al-based Components. Procedia CIRP, 2016, 48, 194-199.	1.0	15
20	Energy and CO 2 life cycle inventory issues for aluminum based components: the case study of a high speed train window panel. Journal of Cleaner Production, 2016, 126, 493-503.	4.6	15
21	A methodology for evaluating the influence of batch size and part geometry on the environmental performance of machining and forming processes. Journal of Cleaner Production, 2016, 135, 1611-1622.	4.6	30
22	Subtractive versus mass conserving metal shaping technologies: an environmental impact comparison. Journal of Cleaner Production, 2015, 87, 862-873.	4.6	20
23	Environmental Comparison between a Hot Extrusion Process and Conventional Machining Processes through a Life Cycle Assessment Approach. Key Engineering Materials, 2014, 622-623, 103-110.	0.4	5
24	A comprehensive analysis of electric energy consumption of single point incremental forming processes. Journal of Cleaner Production, 2014, 67, 173-186.	4.6	38
25	Analysis of Energy Efficiency of Different Setups Able to Perform Single Point Incremental Forming (SPIF) Processes. Procedia CIRP, 2014, 15, 111-116.	1.0	20
26	A contribution on the optimization strategies based on moving least squares approximation for sheet metal forming design. International Journal of Advanced Manufacturing Technology, 2013, 64, 411-425.	1.5	4
27	A Comparison between Three Meta-Modeling Optimization Approaches to Design a Tube Hydroforming Process. Key Engineering Materials, 2012, 504-506, 607-612.	0.4	3
28	A sustainability point of view on sheet metal forming operations: material wasting and energy consumption in incremental forming and stamping processes. Journal of Cleaner Production, 2012, 29-30, 255-268.	4.6	78
29	Sustainability issues in sheet metal forming processes: an overview. Journal of Cleaner Production, 2011, 19, 337-347.	4.6	115
30	Shape Distortion and Thickness Distribution during SPIF Processes: Expermental and Numerical Analysis. Key Engineering Materials, 2011, 473, 913-918.	0.4	2
31	On the Sustainability Evaluation in Sheet Metal Forming Processes. Key Engineering Materials, 2011, 473, 824-829.	0.4	6
32	Moving Least Squares Innovative Strategies For Sheet Forming Design. , 2011, , .		2
33	Optimization methods for complex sheet metal stamping computer aided engineering. Structural and Multidisciplinary Optimization, 2010, 42, 459-480.	1.7	15
34	Design of Complex Sheet Metal Forming Processes: A New Computer Aided Progressive Approach. International Journal of Material Forming, 2010, 3, 21-24.	0.9	7
35	Design of sheet stamping operations to control springback and thinning: A multi-objective stochastic optimization approach. International Journal of Mechanical Sciences, 2010, 52, 914-927.	3.6	30
36	Integration of gradient based and response surface methods to develop a cascade optimisation strategy for Y-shaped tube hydroforming process design. Advances in Engineering Software, 2010, 41, 336-348.	1.8	28

GIUSEPPE INGARAO

#	Article	IF	CITATIONS
37	A new progressive design methodology for complex sheet metal stamping operations: Coupling spatially differentiated restraining forces approach and multi-objective optimization. Computers and Structures, 2010, 88, 625-638.	2.4	13
38	Internal pressure and counterpunch action design in Y-shaped tube hydroforming processes: A multi-objective optimisation approach. Computers and Structures, 2009, 87, 591-602.	2.4	39
39	A Pareto optimal design approach for simultaneous control of thinning and springback in stamping processes. International Journal of Material Forming, 2009, 2, 801-804.	0.9	2
40	A gradient-based decomposition approach to optimize pressure path and counterpunch action in Y-shaped tube hydroforming operations. International Journal of Advanced Manufacturing Technology, 2009, 44, 49-60.	1.5	25
41	Experimental validation of optimisation strategies in hydroforming of T-shaped tubes. International Journal of Material Forming, 2008, 1, 323-326.	0.9	10
42	Multi Stage Strategies for Single Point Incremental Forming of a Cup. International Journal of Material Forming, 2008, 1, 1199-1202.	0.9	80
43	Numerical Prediction Of Elastic Springback In An Automotive Complex Structural Part. AIP Conference Proceedings, 2007, , .	0.3	2
44	An Intelligent Tool to Predict Fracture in Sheet Metal Forming Operations. Key Engineering Materials, 2007, 344, 841-846.	0.4	1
45	On the use of artificial intelligence tools for fracture forecast in cold forming operations. Journal of Materials Processing Technology, 2006, 177, 315-318.	3.1	10
46	Deep Drawing Process Design: A Multi Objective Optimization Approach. Key Engineering Materials, 0, 410-411, 601-608.	0.4	2
47	Electric Energy Consumption Analysis of SPIF Processes. Key Engineering Materials, 0, 549, 547-554.	0.4	5