David W Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6903764/publications.pdf

Version: 2024-02-01

23 papers 3,431 citations

18 h-index 610482 24 g-index

24 all docs

24 does citations

times ranked

24

4640 citing authors

#	Article	IF	CITATIONS
1	Gut mitochondrial defects drive neurodegeneration. Nature Aging, 2022, 2, 277-279.	5.3	3
2	Neuronal induction of BNIP3-mediated mitophagy slows systemic aging in Drosophila. Nature Aging, 2022, 2, 494-507.	5.3	17
3	Role of Prohibitins in Aging and Therapeutic Potential Against Age-Related Diseases. Frontiers in Genetics, 2021, 12, 714228.	1.1	10
4	The selective autophagy receptor SQSTM1/p62 improves lifespan and proteostasis in an evolutionarily conserved manner. Autophagy, 2020, 16, 772-774.	4.3	20
5	Upregulation of the Autophagy Adaptor p62/SQSTM1 Prolongs Health and Lifespan in Middle-Aged Drosophila. Cell Reports, 2019, 28, 1029-1040.e5.	2.9	90
6	Rapamycin modulates tissue aging and lifespan independently of the gut microbiota in Drosophila. Scientific Reports, 2019, 9, 7824.	1.6	66
7	Proteasome \hat{I}^25 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Scientific Reports, 2019, 9, 3170.	1.6	36
8	Keeping it tight: The relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in <i>Drosophila</i> . Fly, 2018, 12, 34-40.	0.9	14
9	Role of gut microbiota in aging-related health decline: insights from invertebrate models. Cellular and Molecular Life Sciences, 2018, 75, 93-101.	2.4	79
10	Intestinal Snakeskin Limits Microbial Dysbiosis during Aging and Promotes Longevity. IScience, 2018, 9, 229-243.	1.9	55
11	Autophagy as a promoter of longevity: insights from model organisms. Nature Reviews Molecular Cell Biology, 2018, 19, 579-593.	16.1	513
12	Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nature Cell Biology, 2017, 19, 52-59.	4.6	90
13	Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nature Communications, 2017, 8, 448.	5.8	209
14	Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality. Cell Reports, 2015, 12, 1656-1667.	2.9	382
15	AMPK Modulates Tissue and Organismal Aging in a Non-Cell-Autonomous Manner. Cell Reports, 2014, 8, 1767-1780.	2.9	241
16	Organ-specific mediation of lifespan extension: More than a gut feeling?. Ageing Research Reviews, 2013, 12, 436-444.	5.0	96
17	Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8638-8643.	3.3	278
18	Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21528-21533.	3.3	479

#	Article	IF	CITATIONS
19	Modulation of Longevity and Tissue Homeostasis by the Drosophila PGC-1 Homolog. Cell Metabolism, 2011, 14, 623-634.	7.2	369
20	The Role of Mitochondria in Drosophila Aging. Experimental Gerontology, 2011, 46, 331-334.	1.2	62
21	Overexpression of a Drosophila Homolog of Apolipoprotein D Leads to Increased Stress Resistance and Extended Lifespan. Current Biology, 2006, 16, 674-679.	1.8	115
22	Hypersensitivity to oxygen and shortened lifespan in a Drosophila mitochondrial complex II mutant. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16382-16387.	3.3	96
23	Mitochondrial "swirls" induced by oxygen stress and in the Drosophila mutant hyperswirl. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10290-10295.	3.3	101