Maksym Shevchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6903158/publications.pdf

Version: 2024-02-01

88	734	13	19
papers	citations	h-index	g-index
91	91	91	224
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Experimental phase equilibria study and thermodynamic modelling of the PbO-"FeO―SiO2-ZnO, PbO-"FeO―SiO2-Al2O3 and PbO-"FeO―SiO2-MgO systems in equilibrium with metallic Pb and Fe. Ceramics International, 2022, , .	4.8	1
2	Integrated Experimental and Thermodynamic Modeling Investigation of Phase Equilibria in the PbO–MgO–SiO2 System in Air. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 954-967.	2.1	6
3	Integrated experimental and thermodynamic modeling study of phase equilibria in the  CuO0.5'-MgO-SiO2 system in equilibrium with liquid Cu metal for characterizing refractory-slag interactions. Ceramics International, 2022, , .	4.8	1
4	Experimental phase equilibria studies in the "CuO0.5―CaO-SiO2 ternary system in equilibrium with metallic copper. Ceramics International, 2022, 48, 9927-9938.	4.8	2
5	Experimental study, thermodynamic calculations and industrial implications of slag/matte/metal equilibria in the Cu–Pb–Fe–O–S–Si system. Journal of Materials Research and Technology, 2022, , .	5.8	2
6	Experimental Study and Thermodynamic Calculations in the CaO–Cu2O–FeO–Fe2O3–SiO2 System for Applications in Novel Copper-Based Processes. Journal of Sustainable Metallurgy, 2021, 7, 300-313.	2.3	7
7	Integrated experimental phase equilibria study and thermodynamic modelling of the binary ZnOâ€"Al2O3, ZnOâ€"SiO2, Al2O3â€"SiO2 and ternary ZnOâ€"Al2O3â€"SiO2 systems. Ceramics International, 2021, 47, 20974-20991.	4.8	14
8	Experimental Phase Equilibria Studies in the FeO-Fe2O3-CaO-SiO2 System and the Subsystems CaO-SiO2, FeO-Fe2O3-SiO2 in Air. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1891-1914.	2.1	8
9	Experimental Phase Equilibria Studies in the FeO-Fe2O3-CaO-Al2O3 System in Air. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2416-2429.	2.1	7
10	Integrated experimental liquidus and modelling studies of the ternary AgO0.5-FeO1.5-SiO2 system in equilibrium with metallic Ag. Journal of Alloys and Compounds, 2021, 870, 159333.	5.5	3
11	Experimental Phase Equilibria Study and Thermodynamic Modelling of the PbO-"FeO―SiO2, PbO-"FeO―CaO and PbO-"FeO―CaO-SiO2 Systems in Equilibrium with Metallic Pb and Fe. Journal of Phase Equilibria and Diffusion, 2021, 42, 452-467.	1.4	4
12	Experimental study and thermodynamic modeling of the Cu–Sn–Si–O system and sub-systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102312.	1.6	8
13	Integrated experimental phase equilibria study and thermodynamic modeling of the PbO–SnO–SnO2–SiO2 system in air and in equilibrium with Pb–Sn metal. Journal of Alloys and Compounds, 2021, 888, 161402.	5.5	5
14	Experimental study of "CuO0.5―"FeO―SiO2 and "FeO―SiO2 systems in equilibrium with metal at 1400–1680°C. Journal of Alloys and Compounds, 2021, 885, 160853.	5.5	5
15	Investigation of the Thermodynamic Stability of C(A, F)3 Solid Solution in the FeO-Fe2O3-CaO-Al2O3 System and SFCA Phase in the FeO-Fe2O3-CaO-SiO2-Al2O3 System. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 517-527.	2.1	6
16	The Effect of MgO on Gas–Slag–Matte–Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473ÂK (1200°C) and 1573ÂK (1300°C), and P(SO2) = 0.25Âatm. Journal of Phase Equilibria and E 41, 44-55.)i ffa sion, 2	.0920,
17	Experimental Study and Thermodynamic Calculations of the Distribution of Ag, Au, Bi, and Zn Between Pb Metal and Pb–Fe–O–Si slag. Journal of Sustainable Metallurgy, 2020, 6, 68-77.	2.3	13
18	Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 70, 101807.	1.6	8

#	Article	IF	CITATIONS
19	Experimental study and thermodynamic optimization of the ZnO–FeO–Fe2O3–CaO–SiO2 system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 71, 102011.	1.6	9
20	Phase Equilibria and Minor Element Distributions in Complex Copper/Slag/Matte Systems. Jom, 2020, 72, 3401-3409.	1.9	19
21	Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si-Al-Ca-Mg System in Controlled Gas Atmosphere: Experimental Results at 1473ÂK (1200°C), 1573ÂK (1300°C) and p(SO2) s Journal of Phase Equilibria and Diffusion, 2020, 41, 243-256.	- 0.25	iÂatm.
22	Thermodynamic optimization of the binary CaO–ZnO and ternary CaO–ZnO–SiO2 systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 70, 101800.	1.6	6
23	Experimental Liquidus Studies of the ZnO-"CuO0.5―and ZnO-"CuO0.5―SiO2 Liquidus in Equilibrium with Cu-Zn Metal. Journal of Phase Equilibria and Diffusion, 2020, 41, 207-217.	1.4	9
24	Experimental Phase Equilibria Studies in the FeO-Fe2O3-CaO-SiO2 System in Air: Results for the Iron-Rich Region. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1587-1602.	2.1	8
25	Experimental Study of Gas-Slag-Matte-Tridymite Equilibria in the Cu-Fe-O-S-Si-Al System at 1573ÂK (1300°C) and P(SO2) = 0.25Âatm. Journal of Phase Equilibria and Diffusion, 2020, 41, 66-78.	1.4	6
26	Thermodynamic optimization of the ZnO–FeO–Fe2O3–SiO2 system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 68, 101735.	1.6	11
27	Characterization of Phase Equilibria and Thermodynamics with Integrated Experimental and Modelling Approach for Complex Lead Primary and Recycling Processing. Minerals, Metals and Materials Series, 2020, , 337-349.	0.4	12
28	Thermodynamic optimization of the binary PbO-"Cu2Oâ€, "Cu2O―SiO2 and ternary PbO-"Cu2O―Si systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 69, 101774.	O2 1.6	8
29	Experimental measurement and thermodynamic model predictions of the distributions of Cu, As, Sb and Sn between liquid lead and PbO–FeO–Fe2O3–SiO2 slag. International Journal of Materials Research, 2020, 111, 733-743.	0.3	11
30	Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 67, 101680.	1.6	20
31	Experimental Liquidus Study of the Ternary CaO-ZnO-SiO2 System. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2780-2793.	2.1	12
32	Experimental Liquidus Studies of the CaO-ZnO-Fe2O3 System in Air. Journal of Phase Equilibria and Diffusion, 2019, 40, 779-786.	1.4	1
33	Thermodynamic optimization of the PbO–FeO–Fe2O3–SiO2 system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 67, 101670.	1.6	12
34	Experimental Liquidus Studies of the Binary Pb-Cu-O and Ternary Pb-Cu-Si-O Systems in Equilibrium with Metallic Pb-Cu Alloys. Journal of Phase Equilibria and Diffusion, 2019, 40, 671-685.	1.4	18
35	Experimental Liquidus Study of the Binary PbO-CaO and Ternary PbO-CaO-SiO2 Systems. Journal of Phase Equilibria and Diffusion, 2019, 40, 148-155.	1.4	12
36	A Phase Equilibrium of the Iron-rich Corner of the CaO–FeO–Fe <ahreeniges sub="">3–SiO₂ System in Air and the Determination of the SFC Primary Phase Field. ISIJ International, 2019, 59, 795-804.</ahreeniges>	1.4	20

#	Article	IF	CITATIONS
37	Effect of Gas Atmosphere on the Phase Chemistry in the CaO–FeO–Fe ₂ O ₃ –SiO ₂ System Related to Iron Ore Sinter-making. ISIJ International, 2019, 59, 805-809.	1.4	10
38	Experimental Liquidus Studies of the Pb-Fe-Ca-O System in Air. Journal of Phase Equilibria and Diffusion, 2019, 40, 128-137.	1.4	11
39	Experimental Liquidus Studies of the Pb-Fe-Si-O System in Air. Journal of Phase Equilibria and Diffusion, 2019, 40, 319-355.	1.4	29
40	Thermodynamic optimization of the binary systems PbO-SiO2, ZnO-SiO2, PbO-ZnO, and ternary PbO-ZnO-SiO2. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 318-326.	1.6	23
41	Experimental liquidus study of the binary PbO-ZnO and ternary PbO-ZnO-SiO2 systems. Ceramics International, 2019, 45, 6795-6803.	4.8	27
42	Experimental liquidus studies of the Zn–Fe–Si–O system in air. International Journal of Materials Research, 2019, 110, 600-607.	0.3	8
43	Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1690-1698.	2.1	11
44	Thermochemical Properties of Binary Ba–In Alloys. Powder Metallurgy and Metal Ceramics, 2018, 56, 556-566.	0.8	1
45	Experimental phase equilibria studies of the PbO–SiO ₂ system. Journal of the American Ceramic Society, 2018, 101, 458-471.	3.8	39
46	Experimental Liquidus Studies of the Pb-Fe-Si-O System in Equilibrium with Metallic Pb. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 159-180.	2.1	39
47	The Thermodynamic Properties and Phase Equilibria in Ce–Sn Alloys. Powder Metallurgy and Metal Ceramics, 2018, 57, 473-479.	0.8	2
48	Thermodynamic Properties of Alloys of the Sn–Yb System. Russian Journal of Physical Chemistry A, 2018, 92, 630-639.	0.6	1
49	Thermodynamic Properties of Al–La–Ni Melts. Powder Metallurgy and Metal Ceramics, 2017, 55, 603-611.	0.8	1
50	Thermodynamic Properties of La–Ni Alloys. Powder Metallurgy and Metal Ceramics, 2017, 55, 717-725.	0.8	3
51	Experimental Phase Equilibria Studies of the Pb-Fe-O System in Air, in Equilibrium with Metallic Lead and at Intermediate Oxygen Potentials. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2970-2983.	2.1	13
52	Thermodynamic Properties of Co–Pr Alloys. Powder Metallurgy and Metal Ceramics, 2017, 56, 94-101.	0.8	1
53	Thermodynamic characteristics and phase equilibria in the alloys of the Ge–La system. Russian Journal of Physical Chemistry A, 2017, 91, 1380-1387.	0.6	3
54	Thermodynamic Properties of Binary Al–Nd Alloys. Powder Metallurgy and Metal Ceramics, 2017, 56, 333-354.	0.8	3

#	Article	IF	CITATIONS
55	Thermodynamic properties of liquid copper–lanthanum alloys. Russian Journal of Physical Chemistry A, 2017, 91, 990-997.	0.6	6
56	Thermodynamic properties of alloys of the binary Sbâ€"Yb system. Russian Journal of Physical Chemistry A, 2017, 91, 1174-1182.	0.6	5
57	Thermodynamic Properties of Alloys of the Binary Biâ€"Yb System. Russian Journal of Physical Chemistry A, 2016, 90, 723-734.	0.6	4
58	Thermodynamic properties of alloys of the binary In–La system. Russian Journal of Physical Chemistry A, 2016, 90, 1101-1114.	0.6	3
59	Thermodynamic Properties of Ce–In–Ni Ternary Alloys. Powder Metallurgy and Metal Ceramics, 2016, 54, 704-711.	0.8	0
60	Thermodynamic Properties of Binary Al–Pr Alloys. Powder Metallurgy and Metal Ceramics, 2016, 55, 78-90.	0.8	4
61	Thermodynamic properties of alloys of the binary In–Yb system. Russian Journal of Physical Chemistry A, 2016, 90, 893-902.	0.6	2
62	Thermodynamic Properties of Ce–Ni Binary Alloys. Powder Metallurgy and Metal Ceramics, 2016, 54, 590-598.	0.8	6
63	Thermodynamic properties of alloys of the binary Gd–In system. Russian Journal of Physical Chemistry A, 2016, 90, 1-10.	0.6	7
64	Experimental Study of Liquidus of the "FeO―SiO2-PbO Slags in Equilibrium with Air and with Metallic Lead. , 2016, , 1221-1228.		14
65	Mixing Enthalpies of Al–Co Melts. Powder Metallurgy and Metal Ceramics, 2015, 54, 324-330.	0.8	2
66	Thermodynamic properties of alloys of the Co-Sc and Co-Y systems. Russian Journal of Physical Chemistry A, 2015, 89, 931-940.	0.6	3
67	Thermodynamic Properties of Alloys of the Binary Al-Sm, Sm-Sn and Ternary Al-Sm-Sn Systems. Journal of Phase Equilibria and Diffusion, 2015, 36, 39-52.	1.4	17
68	Thermodynamic Properties of Binary Al–Ce and Ce–Fe Alloys. Powder Metallurgy and Metal Ceramics, 2015, 54, 80-92.	0.8	7
69	Thermodynamic Properties of Eu–In Alloys. Powder Metallurgy and Metal Ceramics, 2015, 53, 693-700.	0.8	5
70	Thermodynamic Properties of Alloys in the Binary Ca–Ge System. Journal of Phase Equilibria and Diffusion, 2015, 36, 554-572.	1.4	14
71	Thermodynamic Properties of Binary CE–IN Alloys. Powder Metallurgy and Metal Ceramics, 2015, 54, 194-200.	0.8	4
72	Thermodynamic Properties of Binary In–Ni Alloys. Powder Metallurgy and Metal Ceramics, 2015, 54, 465-470.	0.8	2

#	Article	IF	CITATIONS
73	Thermodynamic properties of Eu-Pt and Al-Eu-Pt melts. Inorganic Materials, 2014, 50, 320-323.	0.8	O
74	Thermodynamic properties of melts of the binary Ag(Au)-Sm systems. Russian Journal of Physical Chemistry A, 2014, 88, 200-206.	0.6	8
75	Thermodynamic properties of liquid alloys Ni-Eu and Ni-Yb. Russian Journal of Physical Chemistry A, 2014, 88, 1463-1471.	0.6	7
76	Thermodynamic properties of alloys of the Al-Co and Al-Co-Sc systems. Russian Journal of Physical Chemistry A, 2014, 88, 729-734.	0.6	12
77	Thermodynamic Properties of Al–Sc Alloys. Powder Metallurgy and Metal Ceramics, 2014, 53, 243-249.	0.8	7
78	Thermodynamic properties of alloys of the Ni-Sc and Ni-Y systems. Russian Journal of Physical Chemistry A, 2014, 88, 897-902.	0.6	15
79	Thermodynamic properties of the Al-Eu-Sn melts. Inorganic Materials, 2013, 49, 852-855.	0.8	0
80	Thermodynamic Properties of Liquid Fe–Sc Alloys. Powder Metallurgy and Metal Ceramics, 2013, 52, 456-464.	0.8	4
81	Thermodynamic properties of melts of Mn-Sc(Y, Ln) systems. Russian Journal of Physical Chemistry A, 2012, 86, 1779-1784.	0.6	2
82	Thermodynamic properties of Al-Y system melts. Russian Journal of Physical Chemistry A, 2011, 85, 1-8.	0.6	4
83	The thermodynamic properties of Al-Si system melts. Russian Journal of Physical Chemistry A, 2011, 85, 164-170.	0.6	4
84	Thermodynamic properties of Eu-Pd melts. Russian Journal of Physical Chemistry A, 2011, 85, 2068-2073.	0.6	5
85	Thermodynamic properties of Eu-Sn melts. Russian Journal of Physical Chemistry A, 2011, 85, 2237-2240.	0.6	1
86	Thermodynamic properties of Ni–Hf melts. Powder Metallurgy and Metal Ceramics, 2010, 49, 478-483.	0.8	4
87	Experimental Measurements of Slag/Matte/Metal/Tridymite Phase Equilibria in the Cu-Fe-O-S-Si System at 1200ºC. Mineral Processing and Extractive Metallurgy Review, 0, , 1-11.	5.0	5
88	Experimental Study of the Cu2O-FeOx-CaO System in Equilibrium With Metallic Copper at 1200 \hat{A}° C to 1300 \hat{A}° C and at P(O2)s = 10 \hat{a}° 5 to 10 \hat{a}° 7 Atm. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 0, , 1.	2.1	3