
Di Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6903095/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speckle Noise Suppression Algorithm of Holographic Display Based on Spatial Light Modulator. Frontiers in Photonics, 2022, 2, .	2.4	8
2	Pâ€8.3: Fast Generation Method for Hologram Based on Field of View. Digest of Technical Papers SID International Symposium, 2021, 52, 561-561.	0.3	0
3	Large fieldâ€ofâ€view holographic display method with speckle noise suppression based on time multiplexing. Journal of the Society for Information Display, 2021, 29, 758.	2.1	0
4	Multi-View 2D/3D Switchable Display with Cylindrical Liquid Crystal Lens Array. Crystals, 2021, 11, 715.	2.2	20
5	Holographic Display System to Suppress Speckle Noise Based on Beam Shaping. Photonics, 2021, 8, 204.	2.0	4
6	Pâ€3.1: Wideâ€viewingâ€angle Holographic Nearâ€eye Display Method Based on Curved Computerâ€generated Hologram. Digest of Technical Papers SID International Symposium, 2021, 52, 716-716.	0.3	0
7	Holographic display technology based on liquid crystal device. Journal of the Society for Information Display, 2020, 28, 136-147.	2.1	7
8	Adaptive nematic liquid crystal lens array with resistive layer. Liquid Crystals, 2020, 47, 563-571.	2.2	19
9	Holographic Zoom System With Large Focal Depth Based on Adjustable Lens. IEEE Access, 2020, 8, 85784-85792.	4.2	2
10	Method of Speckle Noise Suppression for Holographic Zoom Display Based on Layered-Pixel-Scanning Algorithm. IEEE Access, 2020, 8, 102128-102137.	4.2	2
11	Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX, 2020, 1, .	13.5	115
12	Multiple-image encryption based on optical scanning holography using orthogonal compressive sensing and random phase mask. Optical Engineering, 2020, 59, 1.	1.0	4
13	Holographic display method with a large field of view based on a holographic functional screen. Applied Optics, 2020, 59, 5983.	1.8	6
14	Method of curved composite hologram generation with suppressed speckle noise. Optics Express, 2020, 28, 34378.	3.4	14
15	Holographic Display System Based on Effective Area Expansion of SLM. IEEE Photonics Journal, 2019, 11, 1-12.	2.0	2
16	Pâ€84: A Method to Suppress the Speckle Noise of the Holographic Display Using Spatiotemporal Multiplexing Technology. Digest of Technical Papers SID International Symposium, 2019, 50, 1549-1552.	0.3	0
17	Color holographic display system based on utilization of effective viewing area. Journal of the Society for Information Display, 2019, 27, 646-653.	2.1	0
18	Adjustable Optical Slit Based on the Phase Type Spatial Light Modulator. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	2

DI WANG

#	Article	IF	CITATIONS
19	A multidirectional beam steering reflector actuated by hydraulic control. Scientific Reports, 2019, 9, 5086.	3.3	4
20	Holographic zoom micro-projection system based on three spatial light modulators. Optics Express, 2019, 27, 8048.	3.4	13
21	Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators. Optics Express, 2019, 27, 11617.	3.4	25
22	Variable aperture with graded attenuation combined with adjustable focal length lens. Optics Express, 2019, 27, 14075.	3.4	15
23	Full color holographic display system based on intensity matching of reconstructed image. Optics Express, 2019, 27, 16599.	3.4	9
24	Adjustable liquid aperture to eliminate undesirable light in holographic projection. Optics Express, 2016, 24, 2098.	3.4	30