Estefânia Vangelie Ramos Campos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6903071/publications.pdf

Version: 2024-02-01

49 papers

6,931 citations

147726 31 h-index 50 g-index

50 all docs

50 docs citations

50 times ranked

9095 citing authors

#	Article	IF	CITATIONS
1	Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 2018, 16, 71.	4.2	3,689
2	Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnology Advances, 2014, 32, 1550-1561.	6.0	364
3	Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, 2015, 35, 47-66.	2.2	238
4	Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecological Indicators, 2019, 105, 483-495.	2.6	225
5	Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. Journal of Nanobiotechnology, 2019, 17, 100.	4.2	177
6	How can nanotechnology help to combat COVID-19? Opportunities and urgent need. Journal of Nanobiotechnology, 2020, 18, 125.	4.2	163
7	Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications. Scientific Reports, 2015, 5, 13809.	1.6	141
8	Solid Lipid Nanoparticles Co-loaded with Simazine and Atrazine: Preparation, Characterization, and Evaluation of Herbicidal Activity. Journal of Agricultural and Food Chemistry, 2015, 63, 422-432.	2.4	131
9	Neem Oil and Crop Protection: From Now to the Future. Frontiers in Plant Science, 2016, 7, 1494.	1.7	112
10	Applications of Controlled Release Systems for Fungicides, Herbicides, Acaricides, Nutrients, and Plant Growth Hormones: A Review. Advanced Science, Engineering and Medicine, 2014, 6, 373-387.	0.3	112
11	Removal of glyphosate herbicide from water using biopolymer membranes. Journal of Environmental Management, 2015, 151, 353-360.	3.8	104
12	Recent Developments and Challenges for Nanoscale Formulation of Botanical Pesticides for Use in Sustainable Agriculture. Journal of Agricultural and Food Chemistry, 2018, 66, 8898-8913.	2.4	97
13	Carvacrol and linalool co-loaded in \hat{i}^2 -cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Scientific Reports, 2018, 8, 7623.	1.6	87
14	Geraniol Encapsulated in Chitosan/Gum Arabic Nanoparticles: A Promising System for Pest Management in Sustainable Agriculture. Journal of Agricultural and Food Chemistry, 2018, 66, 5325-5334.	2.4	84
15	Chitosan nanoparticles functionalized with \hat{l}^2 -cyclodextrin: a promising carrier for botanical pesticides. Scientific Reports, 2018, 8, 2067.	1.6	75
16	A Mechanistic View of Interactions of a Nanoherbicide with Target Organism. Journal of Agricultural and Food Chemistry, 2019, 67, 4453-4462.	2.4	75
17	Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Reviews in Aquaculture, 2019, 11, 119-132.	4.6	74
18	Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2017, 139, 245-253.	2.9	70

#	Article	IF	CITATIONS
19	Chitosan nanoparticles loaded the herbicide paraquat: The influence of the aquatic humic substances on the colloidal stability and toxicity. Journal of Hazardous Materials, 2015, 286, 562-572.	6.5	66
20	Green nanomaterials fostering agrifood sustainability. TrAC - Trends in Analytical Chemistry, 2020, 125, 115840.	5.8	62
21	Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. Journal of Nanobiotechnology, 2021, 19, 30.	4.2	59
22	Post-Emergence Herbicidal Activity of Nanoatrazine Against Susceptible Weeds. Frontiers in Environmental Science, 2018, 6, .	1.5	53
23	Association of zein nanoparticles with botanical compounds for effective pest control systems. Pest Management Science, 2019, 75, 1855-1865.	1.7	48
24	Nanocapsules Containing Neem (Azadirachta Indica) Oil: Development, Characterization, And Toxicity Evaluation. Scientific Reports, 2017, 7, 5929.	1.6	46
25	An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. Journal of Hazardous Materials, 2019, 373, 483-492.	6.5	45
26	Atrazine nanoencapsulation improves preâ€emergence herbicidal activity against ⟨i⟩Bidens pilosa⟨ i⟩ without enhancing longâ€term residual effect on ⟨i⟩Glycine max⟨ i⟩. Pest Management Science, 2020, 76, 141-149.	1.7	44
27	Zein based-nanoparticles loaded botanical pesticides in pest control: An enzyme stimuli-responsive approach aiming sustainable agriculture. Journal of Hazardous Materials, 2021, 417, 126004.	6.5	44
28	Preparation and Characterization of Poly($\hat{l}\mu$ -Caprolactone) Nanospheres Containing the Local Anesthetic Lidocaine. Journal of Pharmaceutical Sciences, 2013, 102, 215-226.	1.6	40
29	Biogenic α-Fe ₂ O ₃ Nanoparticles Enhance the Biological Activity of Trichoderma against the Plant Pathogen <i>Sclerotinia sclerotiorum</i> and Engineering, 2021, 9, 1669-1683.	3.2	38
30	Zein Nanoparticles Impregnated with Eugenol and Garlic Essential Oils for Treating Fish Pathogens. ACS Omega, 2020, 5, 15557-15566.	1.6	35
31	Budesonide-hydroxypropyl-β-cyclodextrin inclusion complex in binary poloxamer 407/403 system for ulcerative colitis treatment: A physico-chemical study from micelles to hydrogels. Colloids and Surfaces B: Biointerfaces, 2016, 138, 138-147.	2.5	32
32	Development of hydrophilic nanocarriers for the charged form of the local anesthetic articaine. Colloids and Surfaces B: Biointerfaces, 2014, 121, 66-73.	2.5	28
33	On the safety of nanoformulations to non-target soil invertebrates – an atrazine case study. Environmental Science: Nano, 2019, 6, 1950-1958.	2.2	28
34	Recent Developments in Nanotechnology for Detection and Control of Aedes aegypti-Borne Diseases. Frontiers in Bioengineering and Biotechnology, 2020, 8, 102.	2.0	28
35	Characterization of Articaine-Loaded Poly($\langle i \rangle \hat{l} \mu \langle i \rangle$ -caprolactone) Nanocapsules and Solid Lipid Nanoparticles in Hydrogels for Topical Formulations. Journal of Nanoscience and Nanotechnology, 2018, 18, 4428-4438.	0.9	26
36	Gene Delivery to the Skin – How Far Have We Come?. Trends in Biotechnology, 2021, 39, 474-487.	4.9	25

#	Article	IF	CITATIONS
37	Trends in nanoformulations for atopic dermatitis treatment. Expert Opinion on Drug Delivery, 2020, 17, 1615-1630.	2.4	24
38	Screening of Conditions for the Preparation of Poly(-Caprolactone) Nanocapsules Containing the Local Anesthetic Articaine. Journal of Colloid Science and Biotechnology, 2013, 2, 106-111.	0.2	18
39	Physico-Chemical Characterization and Biopharmaceutical Evaluation of Lipid-Poloxamer-Based Organogels for Curcumin Skin Delivery. Frontiers in Pharmacology, 2019, 10, 1006.	1.6	15
40	Hydrogels Containing Botanical Repellents Encapsulated in Zein Nanoparticles for Crop Protection. ACS Applied Nano Materials, 2020, 3, 207-217.	2.4	15
41	Influence of chitosan-tripolyphosphate nanoparticles on thermosensitive polymeric hydrogels: structural organization, drug release mechanisms and cytotoxicity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 592-603.	1.8	14
42	A Naked Eyeâ€Invisible Ratiometric Fluorescent Microneedle Tattoo for Realâ€Time Monitoring of Inflammatory Skin Conditions. Advanced Healthcare Materials, 2022, 11, e2102070.	3.9	14
43	Ecotoxicity evaluation of polymeric nanoparticles loaded with ascorbic acid for fish nutrition in aquaculture. Journal of Nanobiotechnology, 2021, 19, 163.	4.2	12
44	Hydrogels Containing Budesonide-Loaded Nanoparticles to Facilitate Percutaneous Absorption for Atopic Dermatitis Treatment Applications. ACS Applied Polymer Materials, 2021, 3, 4436-4449.	2.0	9
45	Factorial Design and Characterization Studies for Articaine Hydrochloride Loaded Alginate/Chitosan Nanoparticles. Journal of Colloid Science and Biotechnology, 2013, 2, 146-152.	0.2	9
46	Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy. BioMed Research International, 2022, 2022, 1-18.	0.9	9
47	Development of stained polymeric nanocapsules loaded with model drugs: Use of a fluorescent poly(phenyleneethynylene). Colloids and Surfaces B: Biointerfaces, 2016, 147, 442-449.	2.5	8
48	Development of a Mosquito Repellent Formulation Based on Nanostructured Lipid Carriers. Frontiers in Pharmacology, 2021, 12, 760682.	1.6	8
49	Interference of goethite in the effects of glyphosate and RoundupÂ $^{\odot}$ on ZFL cell line. Toxicology in Vitro, 2020, 65, 104755.	1.1	6