
Benoist Schaal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6902383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colouration and flavouring of sunflower seeds affect feeding behaviour in urban Carrion crows (Corvus corone): A preliminary study. Applied Animal Behaviour Science, 2022, 251, 105642.	0.8	0
2	Human neonates prefer colostrum to mature milk: Evidence for an olfactory bias toward the "initial milk�. American Journal of Human Biology, 2021, 33, e23521.	0.8	10
3	Age differences in olfactory affective responses: evidence for a positivity effect and an emotional dedifferentiation. Aging, Neuropsychology, and Cognition, 2021, 28, 570-583.	0.7	6
4	Newborn crawling and rooting in response to maternal breast odor. Developmental Science, 2021, 24, e13061.	1.3	17
5	Odor-evoked hedonic contexts influence the discrimination of facial expressions in the human brain. Biological Psychology, 2021, 158, 108005.	1.1	5
6	The role of papillary skin glands in guiding mouse pups to the nipple. Developmental Psychobiology, 2021, 63, 226-236.	0.9	1
7	Male mice and cows perceive human emotional chemosignals: a preliminary study. Animal Cognition, 2021, 24, 1205-1214.	0.9	10
8	Odor-driven face-like categorization in the human infant brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
9	Olfaction in the Multisensory Processing of Faces: A Narrative Review of the Influence of Human Body Odors. Frontiers in Psychology, 2021, 12, 750944.	1.1	9
10	Maternal odor shapes rapid face categorization in the infant brain. Developmental Science, 2020, 23, e12877.	1.3	37
11	Does any mother's body odor stimulate interest in mother's face in 4â€monthâ€øld infants?. Infancy, 20 25, 151-164.	20 _{0.9}	14
12	Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: further evidence for the role of intersensory congruency in perceptual development. Cognitive Development, 2020, 55, 100930.	0.7	14
13	Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice. Environment International, 2020, 144, 106010.	4.8	14
14	Decreasing prevalence of specific anosmia to non-steroid odorants from childhood to adolescence. Physiology and Behavior, 2020, 218, 112833.	1.0	2
15	Olfaction scaffolds the developing human from neonate to adolescent and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190261.	1.8	57
16	Human olfactory communication: current challenges and future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190258.	1.8	33
17	Chemical fingerprints suggest direct familiarisation rather than phenotype matching during olfactory recognition in Australian sea lions (Neophoca cinerea). Journal of Experimental Marine Biology and Ecology, 2019, 517, 49-53.	0.7	8
18	Attractive and appetitive odor factors in murine milk: Their fade-out time and differential cryo-preservation. Behavioural Processes, 2019, 167, 103913.	0.5	2

#	Article	IF	CITATIONS
19	Chemical Profiles of Integumentary and Glandular Substrates in Australian Sea Lion Pups (Neophoca) Tj ETQq1 1	0.784314 1.1	rgBT /Over
20	Weanling Infants Prefer the Odors of Green Vegetables, Cheese, and Fish When Their Mothers Consumed These Foods During Pregnancy and/or Lactation. Chemical Senses, 2019, 44, 257-265.	1.1	18
21	The odour of human milk: Its chemical variability and detection by newborns. Physiology and Behavior, 2019, 199, 88-99.	1.0	31
22	Watching happy faces potentiates incentive salience but not hedonic reactions to palatable food cues in overweight/obese adults. Appetite, 2019, 133, 83-92.	1.8	6
23	The Human Mammary Odour Factor: Variability and Regularities in Sources and Functions. , 2019, , 118-138.		3
24	Seeing odors in color: Cross-modal associations in children and adults from two cultural environments. Journal of Experimental Child Psychology, 2018, 166, 380-399.	0.7	12
25	Mimicking emotions: how 3–12-month-old infants use the facial expressions and eyes of a model. Cognition and Emotion, 2018, 32, 827-842.	1.2	20
26	Tuning functions for automatic detection of brief changes of facial expression in the human brain. Neurolmage, 2018, 179, 235-251.	2.1	25
27	Maternal odor shapes rapid face categorization in the 4-month-old infant brain. Journal of Vision, 2018, 18, 787.	0.1	2
28	Responses of Human Neonates to Highly Diluted Odorants from Sweat. Journal of Chemical Ecology, 2017, 43, 106-117.	0.9	12
29	Chemosensory anxiety signals prime defensive behavior in prepubertal girls. Physiology and Behavior, 2017, 173, 30-33.	1.0	11
30	Animal Consciousness. EFSA Supporting Publications, 2017, 14, 1196E.	0.3	19
31	Tony DeCasper, the man who changed contemporary views on human fetal cognitive abilities. Developmental Psychobiology, 2017, 59, 135-139.	0.9	3
32	How amniotic fluid shapes early odor-guided responses to colostrum and milk (and more). , 2016, , 23-53.		6
33	Emotional expressiveness of 5–6 month-old infants born very premature versus full-term at initial exposure to weaning foods. Appetite, 2016, 107, 494-500.	1.8	10
34	Affective matching of odors and facial expressions in infants: shifting patterns between 3 and 7Âmonths. Developmental Science, 2016, 19, 155-163.	1.3	21
35	Mammary pheromone-induced odour learning influences sucking behaviour and milk intake in the newborn rabbit. Animal Behaviour, 2016, 111, 1-11.	0.8	12
36	The Lasting Influences of Early Food-Related Variety Experience: A Longitudinal Study of Vegetable Acceptance from 5 Months to 6 Years in Two Populations. PLoS ONE, 2016, 11, e0151356.	1.1	84

#	Article	IF	CITATIONS
37	Revealing perceptual tuning functions to facial expression of various intensities by means of fast periodic visual stimulation. Journal of Vision, 2016, 16, 1386.	0.1	0
38	Contextual odors modulate the visual processing of emotional facial expressions: An ERP study. Neuropsychologia, 2015, 77, 366-379.	0.7	45
39	Emotional communication in the context of joint attention for food stimuli: Effects on attentional and affective processing. Biological Psychology, 2015, 104, 173-183.	1.1	14
40	Newborns prefer the odor of milk and nipples from females matched in lactation age: Comparison of two mouse strains. Physiology and Behavior, 2015, 147, 122-130.	1.0	9
41	Reward for food odors: an fMRI study of liking and wanting as a function of metabolic state and BMI. Social Cognitive and Affective Neuroscience, 2015, 10, 561-568.	1.5	57
42	Visual exploration and discrimination of emotional facial expressions in 3-, 7- and 12-month-old infants. Journal of Vision, 2015, 15, 795.	0.1	4
43	The Odor Context Facilitates the Perception of Low-Intensity Facial Expressions of Emotion. PLoS ONE, 2015, 10, e0138656.	1.1	42
44	When the Nose Must Remain Responsive: Glutathione Conjugation of the Mammary Pheromone in the Newborn Rabbit. Chemical Senses, 2014, 39, 425-437.	1.1	19
45	Chemical signals â€~selected for' newborns in mammals. Animal Behaviour, 2014, 97, 289-299.	0.8	24
46	Applied olfactory cognition. Frontiers in Psychology, 2014, 5, 873.	1.1	11
47	Responsiveness of Human Neonates to the Odor of 5α-Androst-16-en-3-one: A Behavioral Paradox?. Chemical Senses, 2014, 39, 693-703.	1.1	24
48	The response of newly born mice to odors of murine colostrum and milk: Unconditionally attractive, conditionally discriminated. Developmental Psychobiology, 2014, 56, 1365-1376.	0.9	11
49	Orientation of newborn mice to lactating females: Identifying biological substrates of semiochemical interest. Developmental Psychobiology, 2013, 55, 113-124.	0.9	17
50	Children's reward responses to picture- and odor-cued food stimuli. A developmental analysis between 6 and 11years. Appetite, 2013, 67, 88-98.	1.8	10
51	How does a newly born mouse get to the nipple? odor substrates eliciting first nipple grasping and sucking responses. Developmental Psychobiology, 2013, 55, 888-901.	0.9	36
52	Maternal status regulates cortical responses to the body odor of newborns. Frontiers in Psychology, 2013, 4, 597.	1.1	56
53	Rabbit Neonates and Human Adults Perceive a Blending 6-Component Odor Mixture in a Comparable Manner. PLoS ONE, 2013, 8, e53534.	1.1	37
54	Eye-Catching Odors: Olfaction Elicits Sustained Gazing to Faces and Eyes in 4-Month-Old Infants. PLoS ONE, 2013, 8, e70677.	1.1	44

4

#	Article	IF	CITATIONS
55	Orofacial reactivity to the sight and smell of food stimuli. Evidence for anticipatory liking related to food reward cues in overweight children. Appetite, 2012, 58, 508-516.	1.8	44
56	Human sweat odour conjugates in human milk, colostrum and amniotic fluid. Food Chemistry, 2012, 135, 228-233.	4.2	8
57	An Odor Timer in Milk? Synchrony in the Odor of Milk Effluvium and Neonatal Chemosensation in the Mouse. PLoS ONE, 2012, 7, e47228.	1.1	12
58	An overlooked aspect of the human breast: Areolar glands in relation with breastfeeding pattern, neonatal weight gain, and the dynamics of lactation. Early Human Development, 2012, 88, 119-128.	0.8	30
59	The role of olfaction in human multisensory development. , 2012, , 29-62.		25
60	Hedonic reactivity to visual and olfactory cues: Rapid facial electromyographic reactions are altered in anorexia nervosa. Biological Psychology, 2011, 86, 265-272.	1.1	52
61	Social olfaction in marine mammals: wild female Australian sea lions can identify their pup's scent. Biology Letters, 2011, 7, 60-62.	1.0	46
62	Experience influences elemental and configural perception of certain binary odour mixtures in newborn rabbits. Journal of Experimental Biology, 2011, 214, 4171-4178.	0.8	28
63	Independence of first- and second-order memories in newborn rabbits. Learning and Memory, 2011, 18, 401-404.	0.5	9
64	Proportion of Odorants Impacts the Configural versus Elemental Perception of a Binary Blending Mixture in Newborn Rabbits. Chemical Senses, 2011, 36, 693-700.	1.1	29
65	A pheromone to behave, a pheromone to learn: the rabbit mammary pheromone. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 779-790.	0.7	41
66	Family Scents: Developmental Changes in the Perception of Kin Body Odor?. Journal of Chemical Ecology, 2010, 36, 847-854.	0.9	48
67	Longâ€lasting memory for an odor acquired at the mother's breast. Developmental Science, 2010, 13, 849-863.	1.3	95
68	Attitudes toward Everyday Odors for Children with Visual Impairments: A Pilot Study. Journal of Visual Impairment and Blindness, 2010, 104, 55-59.	0.4	19
69	The Nose Tells it to the Eyes: Crossmodal Associations between Olfaction and Vision. Perception, 2010, 39, 1541-1554.	0.5	74
70	Mammary Odor Cues and Pheromones. Vitamins and Hormones, 2010, 83, 83-136.	0.7	48
71	The effect of early experience on odor perception in humans: Psychological and physiological correlates. Behavioural Brain Research, 2010, 208, 458-465.	1.2	41
72	Pleasure for visual and olfactory stimuli evoking energy-dense foods is decreased in anorexia nervosa. Psychiatry Research, 2010, 180, 42-47.	1.7	32

#	Article	IF	CITATIONS
73	Pheromone-induced olfactory memory in newborn rabbits: Involvement of consolidation and reconsolidation processes. Learning and Memory, 2009, 16, 470-473.	0.5	14
74	Elemental and configural processing of odour mixtures in the newborn rabbit. Journal of Experimental Biology, 2009, 212, 2525-2531.	0.8	30
75	Human Axillary Odor: Are There Side-Related Perceptual Differences?. Chemical Senses, 2009, 34, 565-571.	1.1	30
76	Unconscious odour conditioning 25 years later: Revisiting and extending â€~Kirk-Smith, Van Toller and Dodd'. Learning and Motivation, 2009, 40, 364-375.	0.6	28
77	Abdominal odours of young, low-ranking European rabbit mothers are less attractive to pups: an experiment with animals living under natural breeding conditions. Journal of Ethology, 2009, 27, 307-315.	0.4	2
78	Mammary olfactory signalisation in females and odor processing in neonates: Ways evolved by rabbits and humans. Behavioural Brain Research, 2009, 200, 346-358.	1.2	79
79	Alternation between foods within a meal. Influence on satiation and consumption in humans. Appetite, 2009, 53, 203-209.	1.8	23
80	The Secretion of Areolar (Montgomery's) Glands from Lactating Women Elicits Selective, Unconditional Responses in Neonates. PLoS ONE, 2009, 4, e7579.	1.1	109
81	The responsiveness of young rabbits to the mammary pheromone: developmental course in domestic and wild pups. Chemoecology, 2008, 18, 53-59.	0.6	19
82	Children's Awareness and Uses of Odor Cues in Everyday Life: A Finland–France Comparison. Chemosensory Perception, 2008, 1, 190-198.	0.7	36
83	Early development of filial preferences in the rabbit: implications of nursing- and pheromone-induced odour learning?. Animal Behaviour, 2008, 76, 305-314.	0.8	14
84	Odorization of a novel object can influence infant's exploratory behavior in unexpected ways. , 2008, 31, 629-636.		14
85	Breastfeeding and experience with variety early in weaning increase infants' acceptance of new foods for up to two months. Clinical Nutrition, 2008, 27, 849-857.	2.3	177
86	Perception of odor blending mixtures in the newborn rabbit. Physiology and Behavior, 2008, 95, 194-199.	1.0	46
87	Alliesthesia to food cues: Heterogeneity across stimuli and sensory modalities. Physiology and Behavior, 2008, 95, 464-470.	1.0	80
88	Human awareness and uses of odor cues in everyday life: Results from a questionnaire study in children. International Journal of Behavioral Development, 2008, 32, 422-431.	1.3	64
89	Le nouveau-né prématuréÂ: un modèle pour l'étude du développement du comportement alimentair Enfance, 2008, Vol. 60, 241-249.	e. 0.1	2
90	Verbal Cues Modulate Hedonic Perception of Odors in 5-Year-Old Children as well as in Adults. Chemical Senses, 2007, 32, 855-862.	1.1	71

#	Article	IF	CITATIONS
91	Food-related sensory experience from birth through weaning: Contrasted patterns in two nearby European regions. Appetite, 2007, 49, 429-440.	1.8	87
92	Olfactory function in children assessed with psychophysical and electrophysiological techniques. Behavioural Brain Research, 2007, 180, 133-138.	1.2	83
93	Effects of repeated exposure on acceptance of initially disliked vegetables in 7-month old infants. Food Quality and Preference, 2007, 18, 1023-1032.	2.3	152
94	The "smellscape―of mother's breast: Effects of odor masking and selective unmasking on neonatal arousal, oral, and visual responses. Developmental Psychobiology, 2007, 49, 129-138.	0.9	74
95	Odour-guided social behaviour in newborn and young cats: an analytical survey. Chemoecology, 2007, 17, 187-199.	0.6	14
96	A putative social chemosignal elicits faster cortical responses than perceptually similar odorants. NeuroImage, 2006, 30, 1340-1346.	2.1	34
97	Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Hormones and Behavior, 2006, 50, 118-125.	1.0	96
98	Rabbit pup response to the mammary pheromone: From automatism to prandial control. Physiology and Behavior, 2006, 89, 742-749.	1.0	44
99	Convergent changes in the maternal emission and pup reception of the rabbit mammary pheromone. Chemoecology, 2006, 16, 169-174.	0.6	25
100	Learning at the breast: Preference formation for an artificial scent and its attraction against the odor of maternal milk. , 2006, 29, 308-321.		81
101	A Pheromone That Rapidly Promotes Learning in the Newborn. Current Biology, 2006, 16, 1956-1961.	1.8	90
102	On the trigeminal percept of androstenone and its implications on the rate of specific anosmia. Journal of Neurobiology, 2006, 66, 1501-1510.	3.7	34
103	Human breast areolae as scent organs: Morphological data and possible involvement in maternal-neonatal coadaptation. Developmental Psychobiology, 2006, 48, 100-110.	0.9	44
104	Olfactory Event-Related Potentials Reflect Individual Differences in Odor Valence Perception. Chemical Senses, 2006, 31, 705-711.	1.1	51
105	Human Newborns Prefer Human Milk: Conspecific Milk Odor Is Attractive Without Postnatal Exposure. Child Development, 2005, 76, 155-168.	1.7	121
106	The mammary pheromone of the rabbit: from where does it come?. Animal Behaviour, 2005, 69, 29-38.	0.8	33
107	Dissociation of emotional processes in response to visual and olfactory stimuli following frontotemporal damage. Neurocase, 2005, 11, 114-128.	0.2	35
108	Aux sources fœtales des réponses sensorielles et émotionnelles du nouveau-né. Spirale, 2005, n o 33, 21-40.	0.0	19

#	Article	IF	CITATIONS
109	Newborn Rabbit Responsiveness to the Mammary Pheromone is Concentration-dependent. Chemical Senses, 2004, 29, 341-350.	1.1	51
110	Olfaction in the fetal and premature infant: functional status and clinical implications. Clinics in Perinatology, 2004, 31, 261-285.	0.8	156
111	A single key-odorant accounts for the pheromonal effect of rabbit milk: Further test of the mammary pheromone?s activity against a wide sample of volatiles from milk. Chemoecology, 2003, 13, 187-192.	0.6	25
112	Chemical and behavioural characterization of the rabbit mammary pheromone. Nature, 2003, 424, 68-72.	13.7	325
113	Olfactory Cognition at the Start of Life: The Perinatal Shaping of Selective Odor Responsiveness. , 2002, , 421-440.		11
114	Orientation response of newborn rabbits to odours of lactating females: relative effectiveness of surface and milk cues. Animal Behaviour, 2001, 61, 153-162.	0.8	53
115	Mimicking Natural Nursing Conditions Promotes Early Pup Survival in Domestic Rabbits. Ethology, 2000, 106, 207-225.	0.5	39
116	Neonatal Responsiveness to the Odor of Amniotic and Lacteal Fluids: A Test of Perinatal Chemosensory Continuity. Child Development, 1998, 69, 611-623.	1.7	199
117	Rating and Recognition of Peers' Personal Odors by 9-Year-Old Children: An Exploratory Study. Journal of General Psychology, 1998, 125, 47-64.	1.6	32
118	Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid Behavioral Neuroscience, 1998, 112, 1438-1449.	0.6	245
119	Twin/Non-Twin Discrimination By Lambs: an Investigation of Salient Stimulus Characteristics. Behaviour, 1997, 134, 463-475.	0.4	17
120	Facial and Autonomic Responses to Biological and Artificial Olfactory Stimuli in Human Neonates. Physiology and Behavior, 1997, 62, 745-758.	1.0	210
121	Physically Aggressive Boys from Age 6 to 12 Years Their Biopsychosocial Status at Puberty. Annals of the New York Academy of Sciences, 1996, 794, 192-207.	1.8	6
122	Fetal sensory competencies. European Journal of Obstetrics, Gynecology and Reproductive Biology, 1996, 68, 1-23.	0.5	165
123	Responsiveness to the Odour of Amniotic Fluid in the Human Neonate. Neonatology, 1995, 67, 397-406.	0.9	100
124	Olfactory Preferences in Newborn Lambs: Possible Influence of Prenatal Experience. Behaviour, 1995, 132, 351-365.	0.4	58
125	Facial Responsiveness to Odours in Normal and Pervasively Developmentally Disordered Children. Chemical Senses, 1995, 20, 47-59.	1.1	26
126	"Microsmatic Humans―Revisited: The Generation and Perception of Chemical Signals. Advances in the Study of Behavior, 1991, , 135-199.	1.0	104

#	Article	IF	CITATIONS
127	Olfaction in infants and children: developmental and functional perspectives. Chemical Senses, 1988, 13, 145-190.	1.1	178