Inge de Kok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6902231/publications.pdf

Version: 2024-02-01

304602 345118 1,475 63 22 36 h-index citations g-index papers 64 64 64 1716 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Introduction of primary screening using high-risk HPV DNA detection in the Dutch cervical cancer screening programme: a population-based cohort study. BMC Medicine, 2019, 17, 228.	2.3	83
2	Primary screening for human papillomavirus compared with cytology screening for cervical cancer in European settings: cost effectiveness analysis based on a Dutch microsimulation model. BMJ: British Medical Journal, 2012, 344, e670-e670.	2.4	79
3	Cervical Cancer Screening in the United States and the Netherlands: A Tale of Two Countries. Milbank Quarterly, 2012, 90, 5-37.	2.1	71
4	Cost-Effectiveness Analysis of Human Papillomavirus Vaccination in the Netherlands. Journal of the National Cancer Institute, 2009, 101, 1083-1092.	3.0	67
5	Childhood social class and cancer incidence: Results of the globe study. Social Science and Medicine, 2008, 66, 1131-1139.	1.8	60
6	Increasing incidence of invasive and in situ cervical adenocarcinoma in the Netherlands during 2004–2013. Cancer Medicine, 2017, 6, 416-423.	1.3	60
7	Costâ€effectiveness of cervical cancer screening: cytology versus human papillomavirus DNA testing. BJOG: an International Journal of Obstetrics and Gynaecology, 2012, 119, 699-709.	1.1	57
8	Identifying the barriers to effective breast, cervical and colorectal cancer screening in thirty one European countries using the Barriers to Effective Screening Tool (BEST). Health Policy, 2018, 122, 1190-1197.	1.4	57
9	The potential of breast cancer screening in Europe. International Journal of Cancer, 2021, 148, 406-418.	2.3	55
10	Effects of cancer screening restart strategies after COVID-19 disruption. British Journal of Cancer, 2021, 124, 1516-1523.	2.9	55
11	Trends in cervical cancer in the Netherlands until 2007: Has the bottom been reached?. International Journal of Cancer, 2011, 128, 2174-2181.	2.3	46
12	Harms of cervical cancer screening in the United States and the Netherlands. International Journal of Cancer, 2017, 140, 1215-1222.	2.3	46
13	Comparing SurePath, ThinPrep, and conventional cytology as primary test method: SurePath is associated with increased CIN II+ detection rates. Cancer Causes and Control, 2016, 27, 15-25.	0.8	44
14	Offering Self-Sampling to Non-Attendees of Organized Primary HPV Screening: When Do Harms Outweigh the Benefits?. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 773-782.	1.1	42
15	Estimating the Natural History of Cervical Carcinogenesis Using Simulation Models: A CISNET Comparative Analysis. Journal of the National Cancer Institute, 2020, 112, 955-963.	3.0	37
16	Cervical screening during the COVID-19 pandemic: optimising recovery strategies. Lancet Public Health, The, 2021, 6, e522-e527.	4.7	37
17	Clinical performance of high-risk HPV testing on self-samples versus clinician samples in routine primary HPV screening in the Netherlands: An observational study. Lancet Regional Health - Europe, The, 2021, 11, 100235.	3.0	36
18	Gender differences in the trend of colorectal cancer incidence in Singapore, 1968–2002. International Journal of Colorectal Disease, 2008, 23, 461-467.	1.0	35

#	Article	IF	CITATIONS
19	Impact of COVID-19-related care disruptions on cervical cancer screening in the United States. Journal of Medical Screening, 2021, 28, 213-216.	1.1	34
20	Impact of disruptions and recovery for established cervical screening programs across a range of high-income country program designs, using COVID-19 as an example: A modelled analysis. Preventive Medicine, 2021, 151, 106623.	1.6	34
21	Costâ€effectiveness of HPVâ€based cervical screening based on first year results in the Netherlands: a modelling study. BJOG: an International Journal of Obstetrics and Gynaecology, 2021, 128, 573-582.	1.1	32
22	Cervical Cancer Screening in Partly HPV Vaccinated Cohorts – A Cost-Effectiveness Analysis. PLoS ONE, 2016, 11, e0145548.	1.1	29
23	Mapping the multicausality of Alzheimer's disease through group model building. GeroScience, 2021, 43, 829-843.	2.1	26
24	Cervical cancer incidence after normal cytological sample in routine screening using SurePath, ThinPrep, and conventional cytology: population based study. BMJ: British Medical Journal, 2017, 356, j504.	2.4	24
25	Would the effect of HPV vaccination on non-cervical HPV-positive cancers make the difference for its cost-effectiveness?. European Journal of Cancer, 2011, 47, 428-435.	1.3	23
26	Practical Implications of Differential Discounting in Cost-Effectiveness Analyses with Varying Numbers of Cohorts. Value in Health, 2011, 14, 438-442.	0.1	21
27	Liquid-based cervical cytology using ThinPrep technology: weighing the pros and cons in a cost-effectiveness analysis. Cancer Causes and Control, 2012, 23, 1323-1331.	0.8	21
28	Molecular markers for cervical cancer screening. Expert Review of Proteomics, 2021, 18, 675-691.	1.3	21
29	The impact of healthcare costs in the last year of life and in all life years gained on the cost-effectiveness of cancer screening. British Journal of Cancer, 2009, 100, 1240-1244.	2.9	19
30	Beware of Kinked Frontiers: A Systematic Review of the Choice of Comparator Strategies in Cost-Effectiveness Analyses of Human Papillomavirus Testing in Cervical Screening. Value in Health, 2015, 18, 1138-1151.	0.1	17
31	The Role of Acquired Immunity in the Spread of Human Papillomavirus (HPV): Explorations with a Microsimulation Model. PLoS ONE, 2015, 10, e0116618.	1.1	17
32	Historical and projected hysterectomy rates in the USA: Implications for future observed cervical cancer rates and evaluating prevention interventions. Gynecologic Oncology, 2020, 158, 710-718.	0.6	16
33	Quality of life assumptions determine which cervical cancer screening strategies are costâ€effective. International Journal of Cancer, 2018, 142, 2383-2393.	2.3	13
34	Results of a health systems approach to identify barriers to population-based cervical and colorectal cancer screening programmes in six European countries. Health Policy, 2018, 122, 1206-1211.	1.4	11
35	Reducing unnecessary referrals for colposcopy in hrHPV-positive women within the Dutch cervical cancer screening programme: A modelling study. Gynecologic Oncology, 2021, 160, 713-720.	0.6	11
36	Exploring the trend of increased cervical intraepithelial neoplasia detection rates in the Netherlands. Journal of Medical Screening, 2015, 22, 144-150.	1.1	10

#	Article	IF	CITATIONS
37	The potential harms of primary human papillomavirus screening in over-screened women: a microsimulation study. Cancer Causes and Control, 2016, 27, 569-581.	0.8	10
38	Management and treatment of cervical intraepithelial neoplasia in the Netherlands after referral for colposcopy. Acta Obstetricia Et Gynecologica Scandinavica, 2019, 98, 737-746.	1.3	10
39	Key indicators of organized cancer screening programs: Results from a Delphi study. Journal of Medical Screening, 2019, 26, 120-126.	1.1	10
40	Public Health Benefits of Routine Human Papillomavirus Vaccination for Adults in the Netherlands: A Mathematical Modeling Study. Journal of Infectious Diseases, 2016, 214, 854-861.	1.9	9
41	Pancreatic cyst surveillance imposes low psychological burden. Pancreatology, 2019, 19, 1061-1066.	0.5	8
42	Identifying key factors for the effectiveness of pancreatic cancer screening: A modelâ€based analysis. International Journal of Cancer, 2021, 149, 337-346.	2.3	8
43	Does lowering the screening age for cervical cancer in The Netherlands make sense?. International Journal of Cancer, 2008, 123, 1403-1406.	2.3	7
44	The estimated impact of natural immunity on the effectiveness of human papillomavirus vaccination. Vaccine, 2015, 33, 5357-5364.	1.7	7
45	Risk of cervical intra-epithelial neoplasia and invasive cancer of the cervix in DES daughters. Gynecologic Oncology, 2017, 144, 305-311.	0.6	7
46	The health impact of human papillomavirus vaccination in the situation of primary human papillomavirus screening: A mathematical modeling study. PLoS ONE, 2018, 13, e0202924.	1.1	7
47	The impact of knowledge of HPV positivity on cytology triage in primary high-risk HPV screening. Journal of Medical Screening, 2019, 26, 221-224.	1.1	6
48	Projected prevalence and incidence of dementia accounting for secular trends and birth cohort effects: a population-based microsimulation study. European Journal of Epidemiology, 2022, 37, 807-814.	2.5	6
49	How many cervical cancer cases can potentially be prevented using a more sensitive screening test at young age?. International Journal of Cancer, 2014, 134, 460-466.	2.3	5
50	The Impact of Different Screening Model Structures on Cervical Cancer Incidence and Mortality Predictions: The Maximum Clinical Incidence Reduction (MCLIR) Methodology. Medical Decision Making, 2020, 40, 474-482.	1.2	5
51	The optimal HPV-screening protocol in Eastern-Europe: The example of Slovenia. Gynecologic Oncology, 2021, 160, 118-127.	0.6	5
52	Investigating the decrease in participation in the Dutch cervical cancer screening programme: The role of personal and organisational characteristics. Preventive Medicine Reports, 2021, 22, 101328.	0.8	5
53	Modeling Strategies to Optimize Cancer Screening in USPSTF Guideline–Noncompliant Women. JAMA Oncology, 2021, 7, 885.	3.4	5
54	Practical Implications of Differential Discounting of Costs and Health Effects in Cost-Effectiveness Analysis. Value in Health, 2011, 14, 1174-1175.	0.1	3

#	Article	IF	Citations
55	When Is It Effective to Offer Self-Sampling to Non-Attendeesâ€"Response. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1296-1296.	1.1	1
56	Authors' reply re: Costâ€effectiveness of cervical cancer screening: cytology versus human papillomavirus DNA testing. BJOG: an International Journal of Obstetrics and Gynaecology, 2016, 123, 1401-1402.	1.1	1
57	Culture and perceptions on cancer risk and prevention, information access, and source credibility: a qualitative interview study in Chinese adults. Health, Risk and Society, 2021, 23, 1-16.	0.9	1
58	The Differential Risk of Cervical Cancer in HPV-Vaccinated and -Unvaccinated Women: A Mathematical Modeling Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 912-919.	1.1	1
59	Shift in harms and benefits of cervical cancer screening in the era of <scp>HPV</scp> screening and vaccination: A modelling study. BJOG: an International Journal of Obstetrics and Gynaecology, 2022, , .	1.1	1
60	HPV-vaccinatie. Bijblijven (Amsterdam, Netherlands), 2017, 33, 29-40.	0.0	0
61	The development of a microsimulation model to predict the future burden of dementia and effects of public health interventions. Alzheimer's and Dementia, 2020, 16, e040855.	0.4	0
62	Risk of Gynecologic Cancer after Atypical Glandular Cells Found on Cervical Cytology: A Population-Based Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 743-750.	1.1	0
63	How do dementia risk differences between birth cohorts affect future incidence predictions: A microsimulation study. Alzheimer's and Dementia, 2021, 17, .	0.4	0