Qiuning Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6902187/publications.pdf

Version: 2024-02-01

172386 223716 3,725 44 29 46 citations h-index g-index papers 48 48 48 5390 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	In situ-formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair. Carbohydrate Polymers, 2022, 276, 118752.	5.1	31
2	Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy. Science Advances, $2021, 7, .$	4.7	88
3	Promoting Oral Mucosal Wound Healing with a Hydrogel Adhesive Based on a Phototriggered Sâ€Nitrosylation Coupling Reaction. Advanced Materials, 2021, 33, e2105667.	11.1	86
4	Light-responsive polymersomes with a charge-switch for targeted drug delivery. Journal of Materials Chemistry B, 2020, 8, 727-735.	2.9	50
5	Hyaluronic acid-based antibacterial hydrogels constructed by a hybrid crosslinking strategy for pacemaker pocket infection prevention. Carbohydrate Polymers, 2020, 245, 116525.	5.1	22
6	Photo and Reduction Dual-Responsive Hydrogel for Regulating Cell Adhesion and Cell Sheet Harvest. ACS Applied Bio Materials, 2020, 3, 2410-2418.	2.3	7
7	Phototriggered labeling and crosslinking by 2-nitrobenzyl alcohol derivatives with amine selectivity. Chemical Communications, 2020, 56, 2264-2267.	2.2	9
8	A well defect-suitable and high-strength biomimetic squid type II gelatin hydrogel promoted in situ costal cartilage regeneration via dynamic immunomodulation and direct induction manners. Biomaterials, 2020, 240, 119841.	5.7	44
9	Moldable and Removable Wound Dressing Based on Dynamic Covalent Cross-Linking of Thiol-Aldehyde Addition. ACS Biomaterials Science and Engineering, 2019, 5, 4048-4053.	2.6	30
10	Precise Construction of Cell-Instructive 3D Microenvironments by Photopatterning a Biodegradable Hydrogel. Chemistry of Materials, 2019, 31, 4710-4719.	3.2	43
11	Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair. Advanced Healthcare Materials, 2019, 8, e1900013.	3.9	52
12	A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nature Communications, 2019, 10, 2060.	5.8	517
13	Adaptable to Mechanically Stable Hydrogels Based on the Dynamic Covalent Cross-Linking of Thiol-Aldehyde Addition. ACS Macro Letters, 2019, 8, 310-314.	2.3	30
14	Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nature Biotechnology, 2019, 37, 1287-1293.	9.4	206
15	Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjugate Chemistry, 2019, 30, 184-191.	1.8	8
16	Coumarin Photocaging Groups Modified with an Electronâ€Rich Styryl Moiety at the 3â€Position: Longâ€Wavelength Excitation, Rapid Photolysis, and Photobleaching. Angewandte Chemie, 2018, 130, 3784-3788.	1.6	23
17	Coumarin Photocaging Groups Modified with an Electronâ€Rich Styryl Moiety at the 3â€Position: Longâ€Wavelength Excitation, Rapid Photolysis, and Photobleaching. Angewandte Chemie - International Edition, 2018, 57, 3722-3726.	7. 2	99
18	Photogenerated Aldehydes for Protein Patterns on Hydrogels and Guidance of Cell Behavior. Advanced Functional Materials, 2018, 28, 1706918.	7.8	42

#	Article	IF	CITATIONS
19	A well-defined unimolecular channel facilitates chloride transport. Chemical Communications, 2018, 54, 1249-1252.	2.2	18
20	Visible light controls cell adhesion on a photoswitchable biointerface. Colloids and Surfaces B: Biointerfaces, 2018, 169, 41-48.	2.5	12
21	An Artificial Molecular Shuttle Operates in Lipid Bilayers for Ion Transport. Journal of the American Chemical Society, 2018, 140, 17992-17998.	6.6	171
22	Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale, 2017, 9, 4430-4438.	2.8	333
23	Micropatterned Protein for Cell Adhesion through Phototriggered Charge Change in a Polyvinylpyrrolidone Hydrogel. Advanced Functional Materials, 2017, 27, 1606258.	7.8	35
24	An in situ photocrosslinkable platelet rich plasma – Complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair. Acta Biomaterialia, 2017, 62, 179-187.	4.1	112
25	A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability. Acta Biomaterialia, 2017, 62, 199-209.	4.1	79
26	Physiological pH-dependent gelation for 3D printing based on the phase separation of gelatin and oxidized dextran. Chemical Communications, 2017, 53, 13023-13026.	2.2	47
27	Tissueâ€Integratable and Biocompatible Photogelation by the Imine Crosslinking Reaction. Advanced Materials, 2016, 28, 2724-2730.	11.1	195
28	Oligo(aryl-triazole)s CHâc ⁻ Cl ^{â⁻'} interactions guide chloride efficient and selective transmembrane transport. Chemical Communications, 2016, 52, 13132-13135.	2.2	16
29	Building Biomedical Materials using Photochemical Bond Cleavage. Advanced Materials, 2015, 27, 1647-1662.	11.1	96
30	Efficient synthetic supramolecular channels and their light-deactivated ion transport in bilayer lipid membranes. New Journal of Chemistry, 2015, 39, 6297-6302.	1.4	28
31	Sequential Control over Thiol Click Chemistry by a Reversibly Photoactivated Thiol Mechanism of Spirothiopyran. Angewandte Chemie - International Edition, 2015, 54, 174-178.	7.2	39
32	Intracellular Thiols and Photoâ€Illumination Sequentially Activate Doubly Locked Molecular Probes for Longâ€Term Cell Highlighting and Tracking with Precise Spatial Accuracy. Chemistry - A European Journal, 2014, 20, 16314-16319.	1.7	9
33	Nearâ€Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolkâ€Shell Upconversion Nanocages. Advanced Functional Materials, 2014, 24, 363-371.	7.8	269
34	Spatiotemporally Controllable and Cytocompatible Approach Builds 3D Cell Culture Matrix by Photoâ€Uncagedâ€Thiol Michael Addition Reaction. Advanced Materials, 2014, 26, 3912-3917.	11.1	85
35	Photoreleasable thiol chemistry for facile and efficient bioconjugation. Chemical Communications, 2014, 50, 1256-1258.	2.2	12
36	Light and reductive dual stimuli-responsive PEI nanoparticles: "AND―logic response and controllable release. Journal of Materials Chemistry B, 2014, 2, 3333-3339.	2.9	32

QIUNING LIN

#	Article	IF	CITATION
37	Highly Discriminating Photorelease of Anticancer Drugs Based on Hypoxia Activatable Phototrigger Conjugated Chitosan Nanoparticles. Advanced Materials, 2013, 25, 1981-1986.	11.1	146
38	Styryl Conjugated Coumarin Caged Alcohol: Efficient Photorelease by Either One-Photon Long Wavelength or Two-Photon NIR Excitation. Organic Letters, 2012, 14, 572-575.	2.4	61
39	7-Amino coumarin based fluorescent phototriggers coupled with nano/bio-conjugated bonds: Synthesis, labeling and photorelease. Journal of Materials Chemistry, 2012, 22, 6680.	6.7	32
40	Target-Activated Coumarin Phototriggers Specifically Switch on Fluorescence and Photocleavage upon Bonding to Thiol-Bearing Protein. Journal of the American Chemical Society, 2012, 134, 5052-5055.	6.6	87
41	Semiconductor quantum dots photosensitizing release of anticancer drug. Chemical Communications, 2011, 47, 1482-1484.	2.2	23
42	Development of an Indole-Based Boron-Dipyrromethene Fluorescent Probe for Benzenethiols. Journal of Physical Chemistry B, 2011, 115, 642-647.	1.2	99
43	Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. Journal of the American Chemical Society, 2010, 132, 10645-10647.	6.6	283
44	In vitro Cartilage Regeneration Regulated by a Hydrostatic Pressure Bioreactor Based on Hybrid Photocrosslinkable Hydrogels. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5