Dinesh A Nagegowda, Fnasc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6902153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant Volatiles: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences, 2006, 25, 417-440.	5.7	1,008
2	Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 2010, 584, 2965-2973.	2.8	324
3	Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant Journal, 2008, 55, 224-239.	5.7	194
4	Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). Journal of Experimental Botany, 2009, 60, 3203-3219.	4.8	136
5	Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant Journal, 2007, 49, 265-275.	5.7	133
6	Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers. Plant Cell, 2012, 24, 2015-2030.	6.6	127
7	Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science, 2020, 294, 110457.	3.6	125
8	De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genomics, 2014, 15, 588.	2.8	113
9	Overexpression of <i>Brassica juncea</i> wildâ€type and mutant HMGâ€CoA synthase 1 in Arabidopsis upâ€regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnology Journal, 2012, 10, 31-42.	8.3	111
10	A WRKY transcription factor from <i>Withania somnifera</i> regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. New Phytologist, 2017, 215, 1115-1131.	7.3	111
11	Heteromeric and Homomeric Geranyl Diphosphate Synthases from Catharanthus roseus and Their Role in Monoterpene Indole Alkaloid Biosynthesis. Molecular Plant, 2013, 6, 1531-1549.	8.3	92
12	The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta. Plant Cell, 2010, 21, 4002-4017.	6.6	91
13	Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Plant Journal, 2009, 59, 256-265.	5.7	87
14	Virusâ€induced gene silencing of <i><scp>W</scp>ithania somnifera</i> squalene synthase negatively regulates sterol and defenceâ€related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnology Journal, 2015, 13, 1287-1299.	8.3	81
15	4-Coumarate: CoA Ligase Partitions Metabolites for Eugenol Biosynthesis. Plant and Cell Physiology, 2013, 54, 1238-1252.	3.1	64
16	Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. Plant Cell Reports, 2014, 33, 1005-1022.	5.6	63
17	Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different Arabidopsis ecotypes. Plant Journal, 2011, 66, 591-602.	5.7	56
18	Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Biochemical Journal, 2004, 383, 517-527.	3.7	50

#	Article	IF	CITATIONS
19	Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves. Plant Science, 2015, 239, 56-66.	3.6	43
20	Structural basis for the design of potent and species-specific inhibitors of 3-hydroxy-3-methylglutaryl CoA synthases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11491-11496.	7.1	37
21	Terpene Moiety Enhancement by Overexpression of Geranyl(geranyl) Diphosphate Synthase and Geraniol Synthase Elevates Monomeric and Dimeric Monoterpene Indole Alkaloids in Transgenic Catharanthus roseus. Frontiers in Plant Science, 2018, 9, 942.	3.6	35
22	Transcriptomic insight into terpenoid and carbazole alkaloid biosynthesis, and functional characterization of two terpene synthases in curry tree (Murraya koenigii). Scientific Reports, 2017, 7, 44126.	3.3	34
23	De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses. Frontiers in Plant Science, 2016, 7, 1129.	3.6	31
24	Brassica juncea HMG-CoA synthase: localization of mRNA and protein. Planta, 2005, 221, 844-856.	3.2	29
25	Brassica juncea chitinase BjCHI1 inhibits growth of fungal phytopathogens and agglutinates Gram-negative bacteria. Journal of Experimental Botany, 2008, 59, 3475-3484.	4.8	28
26	A plastidâ€localized <i>bona fide</i> geranylgeranyl diphosphate synthase plays a necessary role in monoterpene indole alkaloid biosynthesis in <i>Catharanthus roseus</i> . Plant Journal, 2020, 103, 248-265.	5.7	24
27	Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal. Protoplasma, 2017, 254, 389-399.	2.1	23
28	Alternative splicing creates a pseudo-strictosidine β- <scp>d</scp> -glucosidase modulating alkaloid synthesis in <i>Catharanthus roseus</i> . Plant Physiology, 2021, 185, 836-856.	4.8	19
29	RNAi of <i>Sterol Methyl Transferase1</i> Reveals its Direct Role in Diverting Intermediates Towards Withanolide/Phytosterol Biosynthesis in <i>Withania somnifera</i> . Plant and Cell Physiology, 2019, 60, 672-686.	3.1	16
30	Compatibility of Inherent Fungal Endophytes of Withania somnifera with Trichoderma viride and its Impact on Plant Growth and Withanolide Content. Journal of Plant Growth Regulation, 2019, 38, 1228-1242.	5.1	14
31	Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis. Phytochemistry, 2021, 184, 112669.	2.9	12
32	Molecular characterization of three CYP450 genes reveals their role in withanolides formation and defense in Withania somnifera, the Indian Ginseng. Scientific Reports, 2022, 12, 1602.	3.3	12
33	Chapter 10 The Role of the Methyl-Erythritol-Phosphate (MEP)Pathway in Rhythmic Emission of Volatiles. Advances in Photosynthesis and Respiration, 2010, , 139-154.	1.0	11
34	Functional characterization of a defenseâ€responsive bulnesol/elemol synthase from potato. Physiologia Plantarum, 2021, 171, 7-21.	5.2	7
35	An inducible potato (<i>E,E</i>)â€farnesol synthase confers tolerance against bacterial pathogens in potato and tobacco. Plant Journal, 2022, 111, 1308-1323.	5.7	5
36	Characterization of a class III peroxidase from Artemisia annua: relevance to artemisinin metabolism and beyond. Plant Molecular Biology, 2019, 100, 527-541.	3.9	3

#	Article	IF	CITATIONS
37	Virus-Induced Gene Silencing for Functional Genomics in Withania somnifera, an Important Indian Medicinal Plant. Methods in Molecular Biology, 2020, 2172, 139-154.	0.9	3
38	Agrobacterium-Mediated in Planta Transformation in Periwinkle. Methods in Molecular Biology, 2022, , 301-315.	0.9	2
39	The small subunit of geranyl diphosphate synthase: a tool to improve aroma and flavour by metabolic engineering. Journal of Biosciences, 2010, 35, 167-169.	1.1	1
40	Non-radioactive Assay to Determine Product Profile of Short-chain Isoprenyl Diphosphate Synthases. Bio-protocol, 2021, 11, e3874.	0.4	1
41	Virus-Induced Gene Silencing for Functional Genomics of Specialized Metabolism in Medicinal Plants. Methods in Molecular Biology, 2022, 2408, 147-163.	0.9	0