Douglas I Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/69020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkaline residues and the environment: a review of impacts, management practices and opportunities. Journal of Cleaner Production, 2016, 112, 3571-3582.	4.6	243
2	Behavior of Aluminum, Arsenic, and Vanadium during the Neutralization of Red Mud Leachate by HCl, Gypsum, or Seawater. Environmental Science & Technology, 2013, 47, 6527-6535.	4.6	115
3	Extracellular Electron Transport-Mediated Fe(III) Reduction by a Community of Alkaliphilic Bacteria That Use Flavins as Electron Shuttles. Applied and Environmental Microbiology, 2014, 80, 128-137.	1.4	86
4	Sustained Bauxite Residue Rehabilitation with Gypsum and Organic Matter 16 years after Initial Treatment. Environmental Science & Technology, 2018, 52, 152-161.	4.6	79
5	Development of a Functionalized Polymer-Coated Silica for the Removal of Uranium from Groundwater. Environmental Science & Technology, 2003, 37, 4011-4016.	4.6	73
6	Effect of humic substances on Cu(II) solubility in kaolin-sand soil. Journal of Hazardous Materials, 2002, 94, 223-238.	6.5	66
7	Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB. Journal of Hazardous Materials, 2004, 116, 191-204.	6.5	57
8	Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility. Environmental Geochemistry and Health, 2013, 35, 643-656.	1.8	51
9	Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue. Journal of Hazardous Materials, 2011, 194, 15-23.	6.5	50
10	Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. Applied Geochemistry, 2014, 51, 268-277.	1.4	50
11	Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study. Environmental Science & Technology, 2017, 51, 7823-7830.	4.6	50
12	Microbially mediated chromate reduction in soil contaminated by highly alkaline leachate from chromium containing waste. Ecological Engineering, 2010, 36, 211-221.	1.6	49
13	Beneficial management of biomass combustion ashes. Renewable and Sustainable Energy Reviews, 2021, 151, 111555.	8.2	46
14	Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter. Environmental Science and Pollution Research, 2015, 22, 10800-10810.	2.7	44
15	Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Science of the Total Environment, 2016, 541, 1191-1199.	3.9	42
16	Abiotic reduction of Cr(VI) by humic acids derived from peat and lignite: kinetics and removal mechanism. Environmental Science and Pollution Research, 2019, 26, 4717-4729.	2.7	42
17	Chromate Reduction in Highly Alkaline Groundwater by Zerovalent Iron: Implications for Its Use in a Permeable Reactive Barrier. Industrial & Engineering Chemistry Research, 2013, 52, 4704-4714.	1.8	33
18	Coprecipitation of 14C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways. Science of the Total Environment, 2016, 562, 335-343.	3.9	31

DOUGLAS I STEWART

#	Article	IF	CITATIONS
19	Resistivity imaging of soil during electrokinetic transport. Engineering Geology, 1999, 53, 205-215.	2.9	27
20	Biogeochemical Reduction Processes in a Hyper-Alkaline Leachate Affected Soil Profile. Geomicrobiology Journal, 2012, 29, 769-779.	1.0	26
21	Options for managing alkaline steel slag leachate: A life cycle assessment. Journal of Cleaner Production, 2018, 202, 401-412.	4.6	24
22	Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites. Water, Air, and Soil Pollution, 2015, 226, 180.	1.1	23
23	Behaviour and fate of vanadium during the aerobic neutralisation of hyperalkaline slag leachate. Science of the Total Environment, 2018, 643, 1191-1199.	3.9	21
24	Biosensing for the Environment and Defence: Aqueous Uranyl Detection Using Bacterial Surface Layer Proteins. Sensors, 2010, 10, 4739-4755.	2.1	20
25	Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag. Environmental Science and Pollution Research, 2018, 25, 9861-9872.	2.7	20
26	Flow Cell Design for Effective Biosensing. Sensors, 2013, 13, 58-70.	2.1	18
27	Reoxidation of estuarine sediments during simulated resuspension events: Effects on nutrient and trace metal mobilisation. Estuarine, Coastal and Shelf Science, 2018, 207, 40-55.	0.9	17
28	Copper(II) humate mobility in kaolinite soil. Engineering Geology, 2001, 60, 275-284.	2.9	15
29	Hydraulic and biotic impacts on neutralisation of high-pH waters. Science of the Total Environment, 2017, 601-602, 1271-1279.	3.9	14
30	Leaching behaviour of co-disposed steel making wastes: Effects of aeration on leachate chemistry and vanadium mobilisation. Waste Management, 2018, 81, 1-10.	3.7	13
31	Enhanced Crystallographic Incorporation of Strontium(II) Ions into Calcite via Preferential Adsorption at Obtuse Growth Steps. Crystal Growth and Design, 2018, 18, 2836-2843.	1.4	12
32	Performance of a functionalised polymer-coated silica at treating uranium contaminated groundwater from a Hungarian mine site. Engineering Geology, 2006, 85, 174-183.	2.9	9
33	Mechanisms of inorganic carbon-14 attenuation in contaminated groundwater: Effect of solution pH on isotopic exchange and carbonate precipitation reactions. Applied Geochemistry, 2017, 85, 137-147.	1.4	6
34	Behaviour of carbon-14 containing low molecular weight organic compounds in contaminated groundwater under aerobic conditions. Journal of Environmental Radioactivity, 2018, 192, 279-288.	0.9	3
35	The Behavior of Low Molecular Weight Organic Carbon-14 Containing Compounds in Contaminated Groundwater During Denitrification and Iron-Reduction. Geomicrobiology Journal, 2020, 37, 486-495.	1.0	3
36	The Influence of Hyper-Alkaline Leachate on a Generic Host Rock Composition for a Nuclear Waste Repository: Experimental Assessment and Modelling of Novel Variable Porosity and Surface Area. Transport in Porous Media, 2021, 140, 559-580.	1.2	2

DOUGLAS I STEWART

#	Article	IF	CITATIONS
37	Potential reuse options for biomass combustion ash as affected by the persistent organic pollutants (POPs) content. Journal of Hazardous Materials Advances, 2022, 5, 100038.	1.2	2
38	Electrokinetic Transport in Natural Soil Cores. Studies in Environmental Science, 1997, , 689-698.	0.0	0
39	Performance of a Functionalised Polymer-Coated Silica at Treating Uranium Contaminated Groundwater from a Hungarian Mine Site. , 2004, , 347-356.		0
40	In situ disposal of crushed concrete waste as void fill material at UK nuclear sites: Leaching behavior and effect of pH on trace element release. Journal of Hazardous Materials Advances, 2022, 5, 100043.	1.2	0