Mark S Dunstan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6901007/publications.pdf

Version: 2024-02-01

27 papers

1,328 citations

³⁹⁴⁴²¹ 19 h-index 27 g-index

27 all docs

27 docs citations

27 times ranked

1655 citing authors

#	Article	IF	CITATIONS
1	A plasmid toolset for CRISPRâ€mediated genome editing and CRISPRi gene regulation in <i>Escherichia coli</i> . Microbial Biotechnology, 2021, 14, 1120-1129.	4.2	10
2	Prototyping of microbial chassis for the biomanufacturing of high-value chemical targets. Biochemical Society Transactions, 2021, 49, 1055-1063.	3.4	3
3	Ribosomal Protein L11 Selectively Stabilizes a Tertiary Structure of the GTPase Center rRNA Domain. Journal of Molecular Biology, 2020, 432, 991-1007.	4.2	7
4	Engineering Escherichia coli towards de novo production of gatekeeper (2S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Synthetic Biology, 2020, 5, ysaa012.	2.2	45
5	Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metabolic Engineering, 2020, 60, 168-182.	7.0	48
6	Highly multiplexed, fast and accurate nanopore sequencing for verification of synthetic DNA constructs and sequence libraries. Synthetic Biology, 2019, 4, ysz025.	2.2	35
7	An automated pipeline for the screening of diverse monoterpene synthase libraries. Scientific Reports, 2019, 9, 11936.	3.3	21
8	Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature, 2019, 570, 219-223.	27.8	86
9	SelProm: A Queryable and Predictive Expression Vector Selection Tool for <i>Escherichia coli</i> Synthetic Biology, 2019, 8, 1478-1483.	3.8	37
10	Machine Learning of Designed Translational Control Allows Predictive Pathway Optimization in <i>Escherichia coli</i> . ACS Synthetic Biology, 2019, 8, 127-136.	3.8	88
11	PartsGenie: an integrated tool for optimizing and sharing synthetic biology parts. Bioinformatics, 2018, 34, 2327-2329.	4.1	25
12	Engineering the "Missing Link―in Biosynthetic (â^³)-Menthol Production: Bacterial Isopulegone Isomerase. ACS Catalysis, 2018, 8, 2012-2020.	11,2	20
13	Multifragment DNA Assembly of Biochemical Pathways via Automated Ligase Cycling Reaction. Methods in Enzymology, 2018, 608, 369-392.	1.0	11
14	Structure and Biocatalytic Scope of Coclaurine <i>N</i> â€Methyltransferase. Angewandte Chemie - International Edition, 2018, 57, 10600-10604.	13.8	37
15	Structure and Biocatalytic Scope of Coclaurine N â€Methyltransferase. Angewandte Chemie, 2018, 130, 10760-10764.	2.0	6
16	An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Communications Biology, 2018, 1, 66.	4.4	159
17	Zymophore identification enables the discovery of novel phenylalanine ammonia lyase enzymes. Scientific Reports, 2017, 7, 13691.	3.3	30
18	Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides. Angewandte Chemie - International Edition, 2017, 56, 14498-14501.	13.8	74

#	ARTICLE	IF	CITATIONS
19	Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides. Angewandte Chemie, 2017, 129, 14690-14693.	2.0	25
20	Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nature Chemical Biology, 2017, 13, 975-981.	8.0	118
21	biochem4j: Integrated and extensible biochemical knowledge through graph databases. PLoS ONE, 2017, 12, e0179130.	2.5	31
22	SYNBIOCHEM–a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals. Biochemical Society Transactions, 2016, 44, 675-677.	3.4	7
23	Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes. Organic and Biomolecular Chemistry, 2016, 14, 9354-9361.	2.8	55
24	Singleâ€Biocatalyst Synthesis of Enantiopure <scp>d</scp> â€Arylalanines Exploiting an Engineered <scp>d</scp> â€Amino Acid Dehydrogenase. Advanced Synthesis and Catalysis, 2016, 358, 3298-3306.	4.3	51
25	Structures of the methyltransferase component of <i>Desulfitobacterium hafniense </i> DCB-2 <i>O </i> -demethylase shed light on methyltetrahydrofolate formation. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1900-1908.	2.5	5
26	Epoxyqueuosine Reductase Structure Suggests a Mechanism for Cobalamin-dependent tRNA Modification. Journal of Biological Chemistry, 2015, 290, 27572-27581.	3.4	34
27	Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature, 2015, 517, 513-516.	27.8	260