
Bingqing Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6900819/publications.pdf Version: 2024-02-01

RINCOINC WEL

#	Article	IF	CITATIONS
1	Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011, 6, 496-500.	31.5	1,322
2	Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 2001, 79, 1172-1174.	3.3	1,133
3	Miniaturized gas ionization sensors using carbon nanotubes. Nature, 2003, 424, 171-174.	27.8	929
4	Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2Nanostructures. Journal of Physical Chemistry B, 2005, 109, 20207-20214.	2.6	903
5	Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41, 2787-2792.	10.3	888
6	Hierarchical Dendrite-Like Magnetic Materials of Fe ₃ O ₄ , γ-Fe ₂ O ₃ , and Fe with High Performance of Microwave Absorption. Chemistry of Materials, 2011, 23, 1587-1593.	6.7	884
7	Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. Science, 2002, 296, 884-886.	12.6	818
8	Lead adsorption on carbon nanotubes. Chemical Physics Letters, 2002, 357, 263-266.	2.6	649
9	Stretchable Supercapacitors Based on Buckled Singleâ€Walled Carbonâ€Nanotube Macrofilms. Advanced Materials, 2009, 21, 4793-4797.	21.0	627
10	Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 271, 395-400.	5.6	581
11	Carbon Nanotube–Multilayered Graphene Edge Plane Core–Shell Hybrid Foams for Ultrahighâ€Performance Electromagneticâ€Interference Shielding. Advanced Materials, 2017, 29, 1701583.	21.0	560
12	Supercapacitors from Activated Carbon Derived from Banana Fibers. Journal of Physical Chemistry C, 2007, 111, 7527-7531.	3.1	512
13	Supercapacitors based on nanostructured carbon. Nano Energy, 2013, 2, 159-173.	16.0	505
14	Organized assembly of carbon nanotubes. Nature, 2002, 416, 495-496.	27.8	477
15	Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Progress in Materials Science, 2015, 74, 51-124.	32.8	449
16	Effect of Temperature on the Capacitance of Carbon Nanotube Supercapacitors. ACS Nano, 2009, 3, 2199-2206.	14.6	390
17	Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chemical Physics Letters, 2001, 350, 412-416.	2.6	386
18	Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites. Journal of the American Chemical Society, 2003, 125, 9258-9259.	13.7	375

#	Article	IF	CITATIONS
19	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	21.0	363
20	Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chemical Society Reviews, 2016, 45, 3145-3187.	38.1	341
21	One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127, 85-92.	10.3	337
22	Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. Journal of Power Sources, 2006, 159, 361-364.	7.8	336
23	Carbon Nanotube Fiber Based Stretchable Wireâ€ S haped Supercapacitors. Advanced Energy Materials, 2014, 4, 1300759.	19.5	313
24	X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chemical Physics Letters, 2001, 344, 13-17.	2.6	309
25	Highly Flexible Graphene/Mn ₃ O ₄ Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries. ACS Nano, 2016, 10, 6227-6234.	14.6	291
26	Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO ₂ Coated Carbon Nanotube Fibers. ACS Nano, 2015, 9, 6088-6096.	14.6	283
27	Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4009-4012.	7.1	279
28	Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 25446-25453.	8.0	269
29	Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress. ACS Nano, 2010, 4, 6039-6049.	14.6	266
30	Nanotubes in a FlashIgnition and Reconstruction. Science, 2002, 296, 705-705.	12.6	256
31	Advanced engineering of nanostructured carbons for lithium–sulfur batteries. Nano Energy, 2015, 15, 413-444.	16.0	226
32	Superior Potassium Ion Storage via Vertical MoS ₂ "Nanoâ€Rose―with Expanded Interlayers on Graphene. Small, 2017, 13, 1701471.	10.0	221
33	Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nature Communications, 2021, 12, 1343.	12.8	209
34	Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy, 2017, 39, 647-653.	16.0	204
35	A Scalable Approach to Dendriteâ€Free Lithium Anodes via Spontaneous Reduction of Sprayâ€Coated Graphene Oxide Layers. Advanced Materials, 2018, 30, e1801213.	21.0	204
36	Substrate-site selective growth of aligned carbon nanotubes. Applied Physics Letters, 2000, 77, 3764-3766.	3.3	192

#	Article	IF	CITATIONS
37	Dynamic and Galvanic Stability of Stretchable Supercapacitors. Nano Letters, 2012, 12, 6366-6371.	9.1	182
38	Rapid growth of well-aligned carbon nanotube arrays. Chemical Physics Letters, 2002, 362, 285-290.	2.6	177
39	Mechanism of Selective Growth of Carbon Nanotubes on SiO2/Si Patterns. Nano Letters, 2003, 3, 561-564.	9.1	173
40	Electrical transport in pure and boron-doped carbon nanotubes. Applied Physics Letters, 1999, 74, 3149-3151.	3.3	171
41	Noncovalent Functionalization of Graphite and Carbon Nanotubes with Polymer Multilayers and Gold Nanoparticles. Nano Letters, 2003, 3, 1437-1440.	9.1	170
42	Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO ₂ nanoparticles under visible light irradiation. Nanotechnology, 2009, 20, 125603.	2.6	170
43	Silicon Thin Films as Anodes for Highâ€Performance Lithiumâ€Ion Batteries with Effective Stress Relaxation. Advanced Energy Materials, 2012, 2, 68-73.	19.5	168
44	A perspective: carbon nanotube macro-films for energy storage. Energy and Environmental Science, 2013, 6, 3183-3201.	30.8	168
45	Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 37731-37738.	8.0	164
46	One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. Journal of Power Sources, 2016, 306, 100-106.	7.8	163
47	Production of short multi-walled carbon nanotubes. Carbon, 1999, 37, 903-906.	10.3	160
48	Longâ€Cycle Electrochemical Behavior of Multiwall Carbon Nanotubes Synthesized on Stainless Steel in Li Ion Batteries. Advanced Functional Materials, 2009, 19, 1008-1014.	14.9	159
49	Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Materials Today, 2021, 42, 73-98.	14.2	159
50	Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. Journal of Power Sources, 2009, 193, 944-949.	7.8	157
51	Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. Physical Chemistry Chemical Physics, 2013, 15, 17752.	2.8	156
52	Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries. Nano Letters, 2018, 18, 2067-2073.	9.1	154
53	A Highly Flexible and Lightweight MnO ₂ /Graphene Membrane for Superior Zincâ€ŀon Batteries. Advanced Functional Materials, 2021, 31, 2007397.	14.9	153
54	Synthesis and Characterization of Thickness-Aligned Carbon Nanotubeâ^'Polymer Composite Films. Chemistry of Materials, 2005, 17, 974-983.	6.7	151

#	Article	IF	CITATIONS
55	Ferroelectricâ€Enhanced Polysulfide Trapping for Lithium–Sulfur Battery Improvement. Advanced Materials, 2017, 29, 1604724.	21.0	149
56	Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chemical Physics Letters, 2008, 453, 242-249.	2.6	148
57	Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Scientific Reports, 2014, 4, 5619.	3.3	148
58	The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy and Environmental Science, 2011, 4, 2152.	30.8	146
59	Self-organized Ribbons of Aligned Carbon Nanotubes. Chemistry of Materials, 2002, 14, 483-485.	6.7	145
60	Vertically Grown Edgeâ€Rich Graphene Nanosheets for Spatial Control of Li Nucleation. Advanced Energy Materials, 2018, 8, 1800564.	19.5	145
61	Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21%. Journal of Materials Chemistry A, 2019, 7, 2497-2506.	10.3	141
62	Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy, 2018, 51, 457-480.	16.0	140
63	Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon, 2001, 39, 329-335.	10.3	133
64	Synthesis of ultralong MnO/C coaxial nanowires as freestanding anodes for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 13699-13705.	10.3	133
65	Design and preparation of porous carbons from conjugated polymer precursors. Materials Today, 2017, 20, 629-656.	14.2	133
66	High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO ₂ /CNT and Fe ₂ O ₃ /CNT macrofilms. Journal of Materials Chemistry A, 2016, 4, 12289-12295.	10.3	124
67	Assembly of Highly Organized Carbon Nanotube Architectures by Chemical Vapor Deposition. Chemistry of Materials, 2003, 15, 1598-1606.	6.7	122
68	Energy-storage covalent organic frameworks: improving performance <i>via</i> engineering polysulfide chains on walls. Chemical Science, 2019, 10, 6001-6006.	7.4	121
69	Tunable self-discharge process of carbon nanotube based supercapacitors. Nano Energy, 2014, 4, 14-22.	16.0	120
70	Au NPs@MoS ₂ Sub-Micrometer Sphere-ZnO Nanorod Hybrid Structures for Efficient Photocatalytic Hydrogen Evolution with Excellent Stability. Small, 2016, 12, 5692-5701.	10.0	118
71	Growth of carbon micro-trees. Nature, 2000, 404, 243-243.	27.8	115
72	High Rate Reversibility Anode Materials of Lithium Batteries from Vapor-Grown Carbon Nanofibers. Journal of Physical Chemistry B, 2006, 110, 7178-7183.	2.6	115

#	Article	IF	CITATIONS
73	Three-Dimensional Nitrogen-Doped Multiwall Carbon Nanotube Sponges with Tunable Properties. Nano Letters, 2013, 13, 5514-5520.	9.1	110
74	Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO ₂ and their application in supercapacitors. RSC Advances, 2014, 4, 199-202.	3.6	110
75	Structurally Engineered Hyperbranched NiCoP Arrays with Superior Electrocatalytic Activities toward Highly Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 41237-41245.	8.0	110
76	Multifunctional structural reinforcement featuring carbon nanotube films. Composites Science and Technology, 2003, 63, 1525-1531.	7.8	109
77	Direct Growth of Aligned Multiwalled Carbon Nanotubes on Treated Stainless Steel Substrates. Langmuir, 2007, 23, 9046-9049.	3.5	109
78	Carbon nanotube filaments in household light bulbs. Applied Physics Letters, 2004, 84, 4869-4871.	3.3	105
79	Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. Journal of Crystal Growth, 2001, 233, 823-828.	1.5	104
80	Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions. Applied Physics Letters, 2003, 83, 3581-3583.	3.3	104
81	Onion-like nanospheres organized by carbon encapsulated few-layer MoS2 nanosheets with enhanced lithium storage performance. Journal of Power Sources, 2019, 413, 327-333.	7.8	104
82	Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors. Journal of Materials Chemistry A, 2018, 6, 17653-17661.	10.3	102
83	Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/Nâ€rGO Heterostructures for Efficient Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901806.	19.5	101
84	Au Multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy, 2016, 30, 549-558.	16.0	98
85	Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution. Nano Energy, 2019, 57, 388-397.	16.0	98
86	Preparation of carbon nanofibers by the floating catalyst method. Carbon, 2000, 38, 1933-1937.	10.3	96
87	Novel Microwave Synthesis of Nanocrystalline SnO ₂ and Its Electrochemical Properties. Journal of Physical Chemistry C, 2008, 112, 4550-4556.	3.1	95
88	Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films. Nano Energy, 2012, 1, 479-487.	16.0	95
89	MnOx/SWCNT macro-films as flexible binder-free anodes for high-performance Li-ion batteries. Nano Energy, 2013, 2, 733-741.	16.0	91
90	In situ synthesis of SWNTs@MnO 2 /polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy, 2014, 9, 245-251.	16.0	89

#	Article	IF	CITATIONS
91	Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology, 2008, 19, 465204.	2.6	88
92	Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature. Carbon, 2001, 39, 2077-2079.	10.3	86
93	<i>In-Situ</i> Formation of Sandwiched Structures of Nanotube/Cu _{<i>x</i>} O _{<i>y</i>} /Cu Composites for Lithium Battery Applications. ACS Nano, 2009, 3, 2177-2184.	14.6	84
94	Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy, 2015, 15, 83-91.	16.0	84
95	All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life. Nano Energy, 2016, 22, 524-532.	16.0	84
96	Facile fabrication of MnO/C core–shell nanowires as an advanced anode material for lithium-ion batteries. Electrochimica Acta, 2015, 180, 990-997.	5.2	82
97	Constraining Si Particles within Graphene Foam Monolith: Interfacial Modification for Highâ€Performance Li ⁺ Storage and Flexible Integrated Configuration. Advanced Functional Materials, 2016, 26, 6797-6806.	14.9	82
98	Large-Scale Synthesis of Long Double-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 8844-8847.	2.6	81
99	Processing and Performance of Electric Double-Layer Capacitors with Block-Type Carbon Nanotube Electrodes. Bulletin of the Chemical Society of Japan, 1999, 72, 2563-2566.	3.2	80
100	Preparation of ceria nanoparticles supported on carbon nanotubes. Materials Research Bulletin, 2002, 37, 313-318.	5.2	80
101	Hydrothermal synthesis of single-walled carbon nanotube–TiO2 hybrid and its photocatalytic activity. Applied Surface Science, 2013, 270, 238-244.	6.1	80
102	Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors. Nano Letters, 2014, 14, 1938-1943.	9.1	78
103	Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries. Journal of Power Sources, 2018, 395, 77-84.	7.8	78
104	Optical and Electrical Enhancement of Hydrogen Evolution by MoS ₂ @MoO ₃ Core–Shell Nanowires with Designed Tunable Plasmon Resonance. Advanced Functional Materials, 2018, 28, 1802567.	14.9	78
105	Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane. Chemical Physics Letters, 2003, 376, 717-725.	2.6	77
106	Facile synthesis of cobalt hexacyanoferrate/graphene nanocomposites for high-performance supercapacitor. Electrochimica Acta, 2017, 235, 114-121.	5.2	77
107	Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Chemical Physics Letters, 2009, 476, 78-83.	2.6	76
108	Edge-oriented SnS ₂ nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23115-23122.	10.3	76

#	Article	IF	CITATIONS
109	Tailoring Electrode/Electrolyte Interfacial Properties in Flexible Supercapacitors by Applying Pressure. Advanced Energy Materials, 2012, 2, 546-552.	19.5	75
110	High-Density, Large-Area Single-Walled Carbon Nanotube Networks on Nanoscale Patterned Substrates. Journal of Physical Chemistry B, 2003, 107, 6859-6864.	2.6	72
111	Annealing amorphous carbon nanotubes for their application in hydrogen storage. Applied Surface Science, 2003, 205, 39-43.	6.1	70
112	Reducedâ€Grapheneâ€Oxideâ€Guided Directional Growth of Planar Lithium Layers. Advanced Materials, 2020, 32, e1907079.	21.0	70
113	Flexible Sub-Micro Carbon Fiber@CNTs as Anodes for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5015-5021.	8.0	69
114	The effect of sulfur on the number of layers in a carbon nanotube. Carbon, 2007, 45, 2152-2158.	10.3	68
115	Tandem Structure of Porous Silicon Film on Single-Walled Carbon Nanotube Macrofilms for Lithium-Ion Battery Applications. ACS Nano, 2010, 4, 4683-4690.	14.6	68
116	Facile Synthesis, Characterization, and Microwave Absorbability of CoO Nanobelts and Submicrometer Spheres. Journal of Physical Chemistry C, 2009, 113, 6948-6954.	3.1	67
117	Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy–High Power Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4605-4613.	8.0	67
118	Highâ€Performance Organic Solar Cells with Broadband Absorption Enhancement and Reliable Reproducibility Enabled by Collective Plasmonic Effects. Advanced Optical Materials, 2015, 3, 1220-1231.	7.3	66
119	Direct fabrication of single-walled carbon nanotube macro-films on flexible substrates. Chemical Communications, 2007, , 3042.	4.1	65
120	Monitoring Hydrogen Evolution Reaction Intermediates of Transition Metal Dichalcogenides via Operando Raman Spectroscopy. Advanced Functional Materials, 2020, 30, 2003035.	14.9	64
121	Structural Characterizations of Long Single-Walled Carbon Nanotube Strands. Nano Letters, 2002, 2, 1105-1107.	9.1	63
122	Removal of Cu2+ Ions from Aqueous Solutions by Carbon Nanotubes. Adsorption Science and Technology, 2003, 21, 475-485.	3.2	62
123	α-Fe2O3/single-walled carbon nanotube hybrid films as high-performance anodes for rechargeable lithium-ion batteries. Journal of Power Sources, 2013, 241, 330-340.	7.8	62
124	An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS. Nanoscale, 2015, 7, 11291-11299.	5.6	62
125	Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption. Solar Energy Materials and Solar Cells, 2002, 70, 481-486.	6.2	61
126	Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution. Applied Catalysis B: Environmental, 2019, 246, 21-29.	20.2	61

#	Article	IF	CITATIONS
127	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 18246-18251.	13.8	60
128	Controlled synthesis of NiCo2S4 nanostructures on nickel foams for high-performance supercapacitors. Energy Storage Materials, 2016, 2, 1-7.	18.0	59
129	Specific heat of aligned multiwalled carbon nanotubes. Nanotechnology, 2005, 16, 1490-1494.	2.6	57
130	Fast and stable redox reactions of MnO ₂ /CNT hybrid electrodes for dynamically stretchable pseudocapacitors. Nanoscale, 2015, 7, 11626-11632.	5.6	56
131	Straight boron carbide nanorods prepared from carbon nanotubes. Journal of Materials Chemistry, 2002, 12, 3121-3124.	6.7	53
132	Uniform growth of MoS 2 nanosheets on carbon nanofibers with enhanced electrochemical utilization for Li-ion batteries. Electrochimica Acta, 2017, 231, 396-402.	5.2	53
133	Spectral fingerprinting of structural defects in plasma-treated carbon nanotubes. Journal of Materials Research, 2003, 18, 2515-2521.	2.6	52
134	In(OH) ₃ and In ₂ O ₃ Micro/Nanostructures: Controllable NaOAc-Assisted Microemulsion Synthesis and Raman Properties. Journal of Physical Chemistry C, 2009, 113, 19493-19499.	3.1	50
135	Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Science Advances, 2015, 1, e1500605.	10.3	49
136	Au/TiO ₂ Hollow Spheres with Synergistic Effect of Plasmonic Enhancement and Light Scattering for Improved Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31691-31698.	8.0	49
137	Building carbon nanotubes and their smart architectures. Smart Materials and Structures, 2002, 11, 691-698.	3.5	47
138	TiO ₂ enhanced ultraviolet detection based on a graphene/Si Schottky diode. Journal of Materials Chemistry A, 2015, 3, 8133-8138.	10.3	46
139	Tunable synthesis of biomass-based hierarchical porous carbon scaffold@MnO2 nanohybrids for asymmetric supercapacitor. Chemical Engineering Journal, 2020, 393, 121214.	12.7	45
140	Lift-up growth of aligned carbon nanotube patterns. Applied Physics Letters, 2000, 77, 2985-2987.	3.3	44
141	Evolutionary search for new high- <i>k</i> dielectric materials: methodology and applications to hafnia-based oxides. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 76-84.	0.5	44
142	V2O5/single-walled carbon nanotube hybrid mesoporous films as cathodes with high-rate capacities for rechargeable lithium ion batteries. Nano Energy, 2013, 2, 481-490.	16.0	43
143	Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries. Scientific Reports, 2016, 6, 33833.	3.3	43
144	Self-assembled patterns of iron oxide nanoparticles by hydrothermal chemical-vapor deposition. Applied Physics Letters, 2001, 79, 4207-4209.	3.3	42

#	Article	IF	CITATIONS
145	Simultaneous growth of silicon carbide nanorods and carbon nanotubes by chemical vapor deposition. Chemical Physics Letters, 2002, 354, 264-268.	2.6	42
146	Grapevine-like growth of single walled carbon nanotubes among vertically aligned multiwalled nanotube arrays. Applied Physics Letters, 2001, 79, 1252-1254.	3.3	41
147	Room-Temperature Ferromagnetism in Doped Face-Centered Cubic Fe Nanoparticles. Small, 2006, 2, 804-809.	10.0	41
148	Energy Storage and Management System With Carbon Nanotube Supercapacitor and Multidirectional Power Delivery Capability for Autonomous Wireless Sensor Nodes. IEEE Transactions on Power Electronics, 2010, 25, 2897-2909.	7.9	41
149	Mesoporous LaNiO3/NiO nanostructured thin films for high-performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9730.	10.3	40
150	Dramatically Enhanced Ion Conductivity of Gel Polymer Electrolyte for Supercapacitor via h-BN Nanosheets Doping. Electrochimica Acta, 2017, 227, 455-461.	5.2	40
151	α-Fe2O3 Nanocrystals: Controllable SSA-Assisted Hydrothermal Synthesis, Growth Mechanism, and Magnetic Properties. Journal of Physical Chemistry C, 2009, 113, 15897-15903.	3.1	39
152	Controllable Synthesis of Various In ₂ O ₃ Submicron/Nanostructures Using Chemical Vapor Deposition. Crystal Growth and Design, 2009, 9, 2173-2178.	3.0	38
153	A divided potential driving self-discharge process for single-walled carbon nanotube based supercapacitors. RSC Advances, 2011, 1, 989.	3.6	37
154	Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries. Nanoscale, 2014, 6, 5853-5858.	5.6	36
155	Massive Icosahedral Boron Carbide Crystals. Journal of Physical Chemistry B, 2002, 106, 5807-5809.	2.6	35
156	Allâ€Manganeseâ€Based Binderâ€Free Stretchable Lithiumâ€ion Batteries. Advanced Energy Materials, 2017, 7, 1700369.	19.5	35
157	A Novel TiO2-Wrapped Activated Carbon Fiber/Sulfur Hybrid Cathode for High Performance Lithium Sulfur Batteries. Electrochimica Acta, 2016, 210, 415-421.	5.2	34
158	Mechanical and electrical properties of carbon nanotube ribbons. Chemical Physics Letters, 2002, 365, 95-100.	2.6	33
159	Nanostructured manganese oxides and their composites with carbon nanotubes as electrode materials for energy storage devices. Pure and Applied Chemistry, 2008, 80, 2327-2343.	1.9	33
160	Encasing Si particles within a versatile TiO2â^'xFx layer as an extremely reversible anode for high energy-density lithium-ion battery. Nano Energy, 2016, 30, 745-755.	16.0	33
161	Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries. Materials, 2017, 10, 174.	2.9	33
162	Heterostructured TiO ₂ /NiTiO ₃ Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability. ACS Applied Materials & Interfaces, 2018, 10, 11580-11586.	8.0	33

#	Article	IF	CITATIONS
163	Spatial strain variation of graphene films for stretchable electrodes. Carbon, 2015, 93, 620-624.	10.3	32
164	Mechanical properties of nanocomposites reinforced by carbon nanotube sponges. Journal of Materiomics, 2018, 4, 157-164.	5.7	32
165	Grapheneâ€Enhanced Nanomaterials for Wall Painting Protection. Advanced Functional Materials, 2018, 28, 1803872.	14.9	31
166	Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage. Electrochimica Acta, 2019, 321, 134671.	5.2	31
167	Multifunctional Silanization Interface for Highâ€Energy and Lowâ€Gassing Lithium Metal Pouch Cells. Advanced Energy Materials, 2020, 10, 1903362.	19.5	31
168	Aligned carbon nanotube growth under oxidative ambient. Journal of Materials Research, 2001, 16, 3107-3110.	2.6	30
169	In situ growth of SnO2 nanowires on the surface of Au-coated Sn grains using water-assisted chemical vapor deposition. Chemical Physics Letters, 2009, 471, 11-16.	2.6	30
170	Self-assembled carbon–silicon carbonitride nanocomposites: high-performance anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 18186.	6.7	30
171	Generalized Domino-Driven Synthesis of Hollow Hybrid Carbon Spheres with Ultrafine Metal Nitrides/Oxides. Matter, 2020, 3, 246-260.	10.0	30
172	The transformation of fullerenes into diamond under different processing conditions. Journal of Materials Processing Technology, 1997, 63, 573-578.	6.3	29
173	Fabrication of a novel TiO ₂ /S composite cathode for high performance lithium–sulfur batteries. RSC Advances, 2015, 5, 77348-77353.	3.6	29
174	Graphitization behavior of carbon nanofibers prepared by the floating catalyst method. Materials Letters, 2000, 43, 291-294.	2.6	28
175	Self-organized arrays of carbon nanotube ropes. Chemical Physics Letters, 2002, 351, 183-188.	2.6	28
176	Carbon Nanotubes with Graphitic Wings. Advanced Materials, 2004, 16, 610-613.	21.0	28
177	Fabrication and characterization of a nanoporous NiO film with high specific energy and power via an electrochemical dealloying approach. Materials Research Bulletin, 2013, 48, 3829-3833.	5.2	28
178	Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries. Materials, 2017, 10, 77.	2.9	28
179	Macroscopic Three-Dimensional Arrays of Fe Nanoparticles Supported in Aligned Carbon Nanotubes. Journal of Physical Chemistry B, 2001, 105, 11937-11940.	2.6	27
180	Nitrogen-doped carbon nanotubes synthesized by pyrolysis of nitrogen-rich metal phthalocyanine derivatives for oxygen reduction. Journal of Materials Chemistry, 2012, 22, 18230.	6.7	27

#	Article	IF	CITATIONS
181	Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries. RSC Advances, 2016, 6, 35746-35750.	3.6	27
182	Axial dynamic buckling analysis of embedded single-walled carbon nanotube by complex structure-preserving method. Applied Mathematical Modelling, 2017, 52, 15-27.	4.2	27
183	Capacitive Enhancement Mechanisms and Design Principles of Highâ€Performance Graphene Oxideâ€Based Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2018, 28, 1706721.	14.9	27
184	Heterostructured Sn/SnO _{2â^'x} nanotube peapods with a strong plasmonic effect for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2019, 7, 16883-16891.	10.3	26
185	Probing the dynamic evolution of lithium dendrites: a review of <i>in situ</i> / <i>operando</i> characterization for lithium metallic batteries. Nanoscale, 2019, 11, 20429-20436.	5.6	26
186	Nanostructuring HfO ₂ Thin Films as Antireflection Coatings. Journal of the American Ceramic Society, 2009, 92, 3077-3080.	3.8	25
187	Low hydrogen containing amorphous carbon films—Growth and electrochemical properties as lithium battery anodes. Journal of Power Sources, 2010, 195, 2044-2049.	7.8	25
188	One-step route synthesis of active carbon@La2NiO4/NiO hybrid coatings as supercapacitor electrode materials: Significant improvements in electrochemical performance. Journal of Electroanalytical Chemistry, 2015, 742, 1-7.	3.8	25
189	Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions. Nanoscale, 2015, 7, 14299-14304.	5.6	25
190	Hollow Carbon Nanospheres with Developed Porous Structure and Retained N Doping for Facilitated Electrochemical Energy Storage. Langmuir, 2019, 35, 12889-12897.	3.5	25
191	Carbon Nanotube–Magnesium Oxide Cube Networks. Journal of Nanoscience and Nanotechnology, 2001, 1, 35-38.	0.9	24
192	A new method for synthesizing double-walled carbon nanotubes. Carbon, 2002, 40, 2023-2025.	10.3	24
193	Synthesis of well-aligned carbon nanotube network on a gold-patterned quartz substrate. Applied Surface Science, 2001, 181, 234-238.	6.1	23
194	High Rate Capability of Hydrogen Annealed Iron Oxide–Single Walled Carbon Nanotube Hybrid Films for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 10246-10252.	8.0	23
195	Fragmented Carbon Nanotube Macrofilms as Adhesive Conductors for Lithium-Ion Batteries. ACS Nano, 2014, 8, 3049-3059.	14.6	23
196	Carbon nanotube network growth on palladium seeds. Materials Science and Engineering C, 2002, 19, 271-274.	7.3	22
197	In ₂ O ₃ Nanorod Bundles Derived from a Novel Precursor and In ₂ O ₃ Nanoaggregates: Controllable Synthesis, Characterization, and Property Studies. Journal of Physical Chemistry C, 2010, 114, 65-73.	3.1	22
198	Regulating electrodeposition behavior through enhanced mass transfer for stable lithium metal anodes. Journal of Energy Chemistry, 2021, 55, 580-587.	12.9	22

#	Article	IF	CITATIONS
199	Select Pathways to Carbon Nanotube Film Growth. Advanced Materials, 2001, 13, 1767-1770.	21.0	21
200	Controlling growth of carbon microtrees. Carbon, 2001, 39, 2195-2201.	10.3	21
201	Controlling Novel Red-Light Emissions by Doping In2O3 Nano/Microstructures with Interstitial Nitrogen. Journal of Physical Chemistry C, 2010, 114, 13234-13240.	3.1	21
202	Novel microstructure transformation of benzene-derived carbon filaments under laser irradiation. Carbon, 2000, 38, 929-931.	10.3	20
203	Chaotic region of elastically restrained single-walled carbon nanotube. Chaos, 2017, 27, 023118.	2.5	20
204	High Toughness in Ultralow Density Graphene Oxide Foam. Advanced Materials Interfaces, 2017, 4, 1700030.	3.7	20
205	Energy dissipation of damping cantilevered single-walled carbon nanotube oscillator. Nonlinear Dynamics, 2018, 91, 767-776.	5.2	20
206	Wet-Chemical Synthesis of Surface-Passivated Halide Perovskite Microwires for Improved Optoelectronic Performance and Stability. ACS Applied Materials & Interfaces, 2018, 10, 43850-43856.	8.0	20
207	Preparation of Carbon Nanotubules by the Floating Catalyst Method. Journal of Materials Science Letters, 1999, 18, 797-799.	0.5	19
208	Structure and superconductivity of MgB2–carbon nanotube composites. Materials Chemistry and Physics, 2003, 78, 785-790.	4.0	19
209	Synthesis of assembled copper nanoparticles from copper-chelating glycolipid nanotubes. Chemical Physics Letters, 2005, 405, 49-52.	2.6	19
210	Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition. Nanotechnology, 2008, 19, 295602.	2.6	19
211	Physico-chemical characteristics and lead biosorption properties of Enteromorpha prolifera. Colloids and Surfaces B: Biointerfaces, 2011, 85, 316-322.	5.0	19
212	Integrated Auto-Reconfigurable Power-Supply Network With Multidirectional Energy Transfer for Self-Reliant Energy-Harvesting Applications. IEEE Transactions on Industrial Electronics, 2016, 63, 2850-2861.	7.9	18
213	Growing pillars of densely packed carbon nanotubes on Ni-coated silica. Carbon, 2002, 40, 47-51.	10.3	17
214	Building and testing organized architectures of carbon nanotubes. IEEE Nanotechnology Magazine, 2003, 2, 355-361.	2.0	17
215	Super-small energy gaps of single-walled carbon nanotube strands. Applied Physics Letters, 2005, 86, 203107.	3.3	17
216	Hierarchical nanocomposite of hollow carbon spheres encapsulating nano-MoO2 for high-rate and durable Li-ion storage. Journal of Alloys and Compounds, 2019, 787, 301-308.	5.5	17

#	Article	IF	CITATIONS
217	Alternately stacked thin film electrodes for high-performance compact energy storage. Nano Energy, 2020, 78, 105323.	16.0	17
218	Topological materials and topologically engineered materials: properties, synthesis, and applications for energy conversion and storage. Journal of Materials Chemistry A, 2021, 9, 1297-1313.	10.3	17
219	Catalytic growth of carbon nanofibers on a porous carbon nanotubes substrate. Journal of Materials Science Letters, 2000, 19, 1929-1931.	0.5	16
220	Aligned small α-SiC nanorods on β-SiC particles grown in an arc-discharge. Solid State Communications, 2001, 119, 51-53.	1.9	16
221	Growth of aligned carbon nanotubes on self-similar macroscopic templates. Applied Physics Letters, 2002, 81, 1297-1299.	3.3	16
222	Design principles of pseudocapacitive carbon anode materials for ultrafast sodium and potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7756-7764.	10.3	16
223	The Development of Carbon Nanotubes/RuO2•xH2O Electrodes for Electrochemical Capacitors. Bulletin of the Chemical Society of Japan, 2000, 73, 1813-1816.	3.2	15
224	Integrated, Flexible Lithium Metal Battery with Improved Mechanical and Electrochemical Cycling Stability. ACS Applied Energy Materials, 2019, 2, 3642-3650.	5.1	15
225	Tailoring porous structure and graphitic degree of seaweed-derived carbons for high-rate performance lithium-ion batteries. Journal of Alloys and Compounds, 2020, 823, 153862.	5.5	15
226	Structural and transport properties of CdS films deposited on flexible substrates. Solid-State Electronics, 2002, 46, 1417-1420.	1.4	14
227	Facile synthesis of Mesoporouscobalt Hexacyanoferrate Nanocubes for High-Performance Supercapacitors. Nanomaterials, 2017, 7, 228.	4.1	14
228	Inducing rapid polysulfide transformation through enhanced interfacial electronic interaction for lithium–sulfur batteries. Nanoscale, 2020, 12, 13980-13986.	5.6	14
229	Selective specimen preparation for TEM observation of the cross-section of individual carbon nanotube/metal junctions. Ultramicroscopy, 2000, 85, 93-98.	1.9	13
230	High-K dielectric sulfur-selenium alloys. Science Advances, 2019, 5, eaau9785.	10.3	13
231	Dual Functionalities of Few-Layered Boron Nitrides in the Design and Implementation of Ca(OH) ₂ Nanomaterials toward an Efficient Wall Painting Fireproofing and Consolidation. ACS Applied Materials & amp; Interfaces, 2019, 11, 11792-11799.	8.0	13
232	Phosphorus - a new element for promoting growth of carbon filaments by the floating catalyst method. Carbon, 1999, 37, 1652-1654.	10.3	12
233	Deposition of the platinum crystals on the carbon nanotubes. Science Bulletin, 2000, 45, 134-137.	1.7	12
234	Hybrid effect of gas flow and light excitation in carbon/silicon Schottky solar cells. Journal of Materials Chemistry, 2012, 22, 3330.	6.7	12

#	Article	IF	CITATIONS
235	Enhanced Tunable Light Absorption in Nanostructured Si Arrays Based on Doubleâ€Quarterâ€Wavelength Resonance. Advanced Optical Materials, 2019, 7, 1900845.	7.3	12
236	Recent progress in stabilizing perovskite solar cells through two-dimensional modification. APL Materials, 2021, 9, .	5.1	12
237	Temperature dependence of field emission of single-walled carbon nanotube thin films. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1277-1280.	2.7	11
238	Hyperelasticity of three-dimensional carbon nanotube sponge controlled by the stiffness of covalent junctions. Carbon, 2015, 95, 640-645.	10.3	11
239	All-Solid-State Stretchable Pseudocapacitors Enabled by Carbon Nanotube Film-Capped Sandwich-like Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 25243-25250.	8.0	11
240	Self-healable transparent polymer/salt hybrid adhesive <i>via</i> a ternary bonding effect. Journal of Materials Chemistry A, 2020, 8, 21812-21823.	10.3	11
241	Thermal Stability of Carbon-Nanotube-Based Field Emission Diodes. Journal of Physical Chemistry C, 2007, 111, 12112-12115.	3.1	10
242	The importance of raw graphite size to the capacitive properties of graphene oxide. RSC Advances, 2016, 6, 17023-17028.	3.6	10
243	Hybrids of CNTs and acrylic emulsion for the consolidation of wall paintings. Progress in Organic Coatings, 2018, 124, 185-192.	3.9	10
244	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 18414-18419.	2.0	10
245	Hybrid printed three-dimensionally integrated micro-supercapacitors for compact on-chip application. Applied Physics Reviews, 2021, 8, .	11.3	10
246	Assembling <scp>metalâ€polyphenol</scp> coordination interfaces for longstanding zinc metal anodes. EcoMat, 2022, 4, .	11.9	10
247	Development of supercapacitors based on carbon nanotubes. Science in China Series D: Earth Sciences, 2000, 43, 178-182.	0.9	9
248	Self-networking of carbon nanotubes. Chemical Communications, 2002, , 962-963.	4.1	9
249	Luminescence of carbon nanotube bulbs. Science Bulletin, 2007, 52, 113-117.	1.7	9
250	A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage. Frontiers in Materials, 2015, 2, .	2.4	9
251	Interconnecting Bone Nanoparticles by Ovalbumin Molecules to Build a Three-Dimensional Low-Density and Tough Material. ACS Applied Materials & Interfaces, 2018, 10, 41757-41762.	8.0	9
252	Environment-Friendly Poly(2-ethyl-2-oxazoline) as an Innovative Consolidant for Ancient Wall Paintings. Nanomaterials, 2018, 8, 649.	4.1	9

#	Article	IF	CITATIONS
253	Synthesis of diamond from buckytubes by laser and quenching treatment. Materials Letters, 1997, 31, 79-82.	2.6	8
254	Carbon nanotube dendrites: availability and their growth model. Materials Research Bulletin, 2001, 36, 2519-2523.	5.2	8
255	Vertically aligned conductive carbon nanotube junctions and arrays for device applications. Applied Physics Letters, 2004, 84, 2889-2891.	3.3	8
256	Vertically Well-Aligned In2O3 Cone-Like Nanowire Arrays Grown on Indium Substrates. European Journal of Inorganic Chemistry, 2011, 2011, 1570-1576.	2.0	8
257	A Lightweight, Adhesive, Dualâ€Functionalized Overâ€Coating Interphase Toward Ultraâ€Stable Highâ€Current Density Lithium Metal Anodes. Energy and Environmental Materials, 2021, 4, 103-110.	12.8	8
258	Mobility of Carbon Nanotubes in High Electric Fields. Journal of Nanoscience and Nanotechnology, 2004, 4, 69-71.	0.9	8
259	Structure and electrical resistivity of the Al-carbon nanotube composites. Metals and Materials International, 1998, 4, 620-623.	0.2	7
260	Density modulated multilayer silicon thin films as li-ion battery anodes. Materials Research Society Symposia Proceedings, 2012, 1440, 61.	0.1	7
261	Bidirectional Correlation between Mechanics and Electrochemistry of Poly(vinyl alcohol)-Based Gel Polymer Electrolytes. Journal of Physical Chemistry Letters, 2017, 8, 6106-6112.	4.6	7
262	Poly-albumen: Bio-derived structural polymer from polymerized egg white. Materials Today Chemistry, 2018, 9, 73-79.	3.5	7
263	Molecular investigation on the compatibility of epoxy resin with liquid oxygen. Theoretical and Applied Mechanics Letters, 2020, 10, 38-45.	2.8	7
264	Ferrocene-activated growth of carbon-reinforced silica nanowires from a planar silica layer by chemical vapour deposition. Journal of Physics Condensed Matter, 2002, 14, L511-L517.	1.8	6
265	Controllable and Predictable Viscoelastic Behavior of 3D Boronâ€Doped Multiwalled Carbon Nanotube Sponges. Particle and Particle Systems Characterization, 2016, 33, 21-26.	2.3	6
266	Tuning the Dimensionality of Nano Ca(OH) ₂ with Surfactants for Wall Painting Consolidation. ChemNanoMat, 2019, 5, 1152-1158.	2.8	6
267	Understanding the Coffee ring Effect on Selfâ€discharge Behavior of Printed microâ€6upercapacitors. Energy and Environmental Materials, 2022, 5, 321-326.	12.8	6
268	Selective Activation and Passivation of Nanoparticle Catalysts through Substrate Mediation. Langmuir, 2003, 19, 10629-10631.	3.5	5
269	Self-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution. Nanomaterials, 2017, 7, 433.	4.1	5
270	Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency. ACS Applied Materials & Interfaces, 2018, 10, 20095-20105.	8.0	5

#	Article	IF	CITATIONS
271	Achieving Selfâ€Stiffening and Laser Healing by Interconnecting Graphene Oxide Sheets with Amineâ€Functionalized Ovalbumin. Advanced Materials Interfaces, 2018, 5, 1800932.	3.7	5
272	Spatially anchoring the lithiophilic composites within the mixed-conducting phase: A hybrid storage mechanism enabled by the Al-Si@AlSiOX composite. Chemical Engineering Journal, 2021, 417, 127915.	12.7	5
273	Self-assembly of multiwalled carbon nanotubes from quench-condensed CNi3 films. Journal of Applied Physics, 2008, 103, 053503.	2.5	4
274	Supercapacitors: Tailoring Electrode/Electrolyte Interfacial Properties in Flexible Supercapacitors by Applying Pressure (Adv. Energy Mater. 5/2012). Advanced Energy Materials, 2012, 2, 498-498.	19.5	4
275	Catalytic Boosting Bidirectional Polysulfide Redox using Co _{0.85} Se/C Hollow Structure for Highâ€Performance Lithium‣ulfur Batteries. ChemElectroChem, 2022, 9, .	3.4	4
276	Crystallization behavior of amorphous Fe–P strengthened with embedded carbon nanotubes. Journal of Applied Physics, 2003, 93, 1748-1752.	2.5	3
277	Facile decolorization of methylene blue with flower-like manganese wads. Water Science and Technology, 2014, 69, 1094-1100.	2.5	3
278	Nanomaterials for Stretchable Energy Storage and Conversion Devices. Nanoscience and Technology, 2016, , 159-191.	1.5	3
279	Water Splitting: Optical and Electrical Enhancement of Hydrogen Evolution by MoS2 @MoO3 Core-Shell Nanowires with Designed Tunable Plasmon Resonance (Adv. Funct. Mater. 32/2018). Advanced Functional Materials, 2018, 28, 1870226.	14.9	3
280	Plasma-Wind-Assisted In2S3 Preparation with an Amorphous Surface Structure for Enhanced Photocatalytic Hydrogen Production. Nanomaterials, 2022, 12, 1761.	4.1	3
281	Novel carbon filaments with carbon beads grown on their surface. Journal of Materials Science Letters, 2000, 19, 21-22.	0.5	2
282	Thermal Stability of HfO ₂ Nanostructures as Antireflection Coatings. Nanoscience and Nanotechnology Letters, 2011, 3, 731-734.	0.4	2
283	Energy Storage: Superior Potassium Ion Storage via Vertical MoS ₂ "Nanoâ€Rose―with Expanded Interlayers on Graphene (Small 42/2017). Small, 2017, 13, .	10.0	2
284	Mechanical Properties of Ultralow Density Graphene Oxide/Polydimethylsiloxane Foams. MRS Advances, 2018, 3, 61-66.	0.9	2
285	Understanding of Anion Transport in Polymer Electrolytes for Supercapacitors. Advanced Theory and Simulations, 2019, 2, 1800140.	2.8	2
286	Quenching C60 fullerene into diamond in the Fe-C alloy system by laser treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 2293-2296.	2.2	1
287	<title>Carbon nanotubes: new material applied to field emission display</title> . , 1998, , .		1
288	Controlling the Aligned Growth of Carbon Nanotubes by Substrate Selection and Patterning. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1

#	Article	IF	CITATIONS
289	Miniaturized Gas Ionization Sensors Using Carbon Nanotubes ChemInform, 2003, 34, no.	0.0	1
290	Experimental Investigation of Temperature Annealing Effect on Thermophysical Properties of Carbon Nanotube Arrays. , 2003, , 349.		1
291	Building and testing organized architectures of carbon nanotubes. , 2003, , .		1
292	Synthetic Approaches for Carbon Nanotubes. , 2005, , 33-55.		1
293	Synthesis of flower-like manganese wad and its decolorization performance for azo dye Congo red. Chemical Research in Chinese Universities, 2014, 30, 306-309.	2.6	1
294	Graphene Quantum Dots: Grapheneâ€Enhanced Nanomaterials for Wall Painting Protection (Adv. Funct.) Tj ETQo	q0.0.0 rgB	T /Overlock I I
295	Enhanced Superconductivity Induced by the Hexagonal-Array-Cooling-Shrinkage Effect. ACS Applied Electronic Materials, 2020, 2, 1381-1387.	4.3	1
296	Blending poly(2â€ethylâ€2â€oxazoline) with hydrophobic polymers as a hybrid adhesive with enhanced waterâ€resistant properties. Journal of Applied Polymer Science, 2021, 138, 51404.	2.6	1
297	Plasmon-induced super-semiconductor at room temperature in nanostructured bimetallic arrays. Applied Physics Reviews, 2022, 9, 021412.	11.3	1
298	Fullerenes transfer to diamond under laser processing and subsequent heat treatment. , 1996, 2888, 287.		0
299	Temperature dependence of the resistivity of individual multi-walled pure/boron doped carbon nanotubes at elevated temperatures. , 1999, , .		0
300	Title is missing!. Journal of Materials Science Letters, 2000, 19, 1769-1770.	0.5	0
301	A Mechanism of Diamond Growth with Carbon Nanotube Nucleation Agent by Hot-Filament Chemical Vapor Deposition. Materials Transactions, 2001, 42, 1753-1757.	1.2	0
302	<title>Building and testing carbon nanotubes and their architectures</title> ., 2001, , .		0
303	AFM-based Electrical Characterization of Nano-structures. Materials Research Society Symposia Proceedings, 2002, 738, 921.	0.1	0
304	Attenuation of Surface Acoustic Waves by Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	0
305	AFM-based Electrical Characterization of Nano-structures. Materials Research Society Symposia Proceedings, 2002, 761, 1.	0.1	0

Possibility of using carbon nanotubes as microactuators. , 2004, 5389, 159.

0

	BINGC	BINGQING WEI		
#	Article	IF	CITATIONS	
307	Select Pathways to Carbon Nanotube Film Growth. Advanced Materials, 2001, 13, 1767-1770.	21.0	Ο	