
Utpal P Davé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6900816/publications.pdf Version: 2024-02-01

ΙΙτραι Ρ. Πανία

#	Article	IF	CITATIONS
1	Epigenetic Aberrations and Targets in Peripheral T-Cell Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 659-665.	0.4	2
2	AAV Joins the Rank of Genotoxic Vectors. Molecular Therapy, 2021, 29, 418-419.	8.2	20
3	Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS. Nature Communications, 2020, 11, 4755.	12.8	12
4	Loss of TGâ€Interacting Factor 1 decreases survival in mouse models of myeloid leukaemia. Journal of Cellular and Molecular Medicine, 2020, 24, 13472-13480.	3.6	3
5	Primary cutaneous peripheral T-cell lymphoma, not otherwise specified with mammalian target of rapamycin mutation: A novel finding for targeted treatment. JAAD Case Reports, 2020, 6, 1342-1344.	0.8	1
6	LDB1 Enforces Stability on Direct and Indirect Oncoprotein Partners in Leukemia. Molecular and Cellular Biology, 2020, 40, .	2.3	11
7	Ldb1 is required for Lmo2 oncogene–induced thymocyte self-renewal and T-cell acute lymphoblastic leukemia. Blood, 2020, 135, 2252-2265.	1.4	7
8	Aging of Preleukemic Thymocytes Drives CpG Island Hypermethylation in T-cell Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 274-289.	5.0	21
9	Relationship between CD45 Expression and Outcomes in B Lymphoblastic Leukemia/Lymphoma. Blood, 2020, 136, 24-24.	1.4	1
10	Aging of Preleukemic Thymocytes Drives CpG Island Hypermethylation in T-Cell Acute Lymphoblastic Leukemia. Blood, 2020, 136, 28-29.	1.4	0
11	LIM Domain Protein 1 (Ldb1) Is Required for Lmo2 Oncogene-Induced Thymocyte Self-Renewal and T-Cell Leukemia in a Mouse Model of Human T-ALL. Blood, 2019, 134, 2538-2538.	1.4	Ο
12	Genomic Profiling of T-Cell Neoplasms Reveals Frequent <i>JAK1</i> and <i>JAK3</i> Mutations With Clonal Evasion From Targeted Therapies. JCO Precision Oncology, 2018, 2018, 1-16.	3.0	23
13	Comprehensive Genomic Profiling of Angioimmunoblastic T-Cell Lymphoma (AITL) in Chinese Patients. Blood, 2018, 132, 5293-5293.	1.4	1
14	PI3Kγ/δ and NOTCH1 Cross-Regulate Pathways That Define the T-cell Acute Lymphoblastic Leukemia Disease Signature. Molecular Cancer Therapeutics, 2017, 16, 2069-2082.	4.1	8
15	Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1016-25.	7.1	24
16	LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding. Molecular and Cellular Biology, 2016, 36, 488-506.	2.3	9
17	<i>Hhex</i> is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation. Stem Cells, 2015, 33, 2628-2641.	3.2	30
18	Enforced expression of E47 has differential effects on Lmo2-induced T-cell leukemias. Leukemia Research, 2015, 39, 100-109.	0.8	8

Utpal P Davé

#	Article	IF	CITATIONS
19	LMO2 induces T-cell leukemia with epigenetic deregulation of CD4. Experimental Hematology, 2014, 42, 581-593.e5.	0.4	8
20	LIM Domain Only-2 (LMO2) Induces T-Cell Leukemia by Two Distinct Pathways. PLoS ONE, 2014, 9, e85883.	2.5	46
21	<i>Tgif1</i> Regulates Quiescence and Self-Renewal of Hematopoietic Stem Cells. Molecular and Cellular Biology, 2013, 33, 4824-4833.	2.3	26
22	<i>Lmo2</i> Induces Hematopoietic Stem Cell-Like Features in T-Cell Progenitor Cells Prior to Leukemia. Stem Cells, 2013, 31, 882-894.	3.2	47
23	Hhex Is a Critical Gene In The Development Of Normal and Malignant Lymphoid Cells. Blood, 2013, 122, 3788-3788.	1.4	0
24	Targeting Nonclassical Oncogenes for Therapy in T-ALL. Cancer Cell, 2012, 21, 459-472.	16.8	84
25	Therapeutic Utility of PI3KÎ ³ Inhibition in Leukemogenesis and Tumor Cell Survival. Blood, 2012, 120, 1492-1492.	1.4	1
26	FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood, 2011, 118, 3911-3921.	1.4	79
27	Cooperating Oncogenes and Their Targets in LMO2-Induced T-Cell Leukemia. Blood, 2011, 118, 2458-2458.	1.4	0
28	Enforced E47 Expression Has Differential Effects on Lmo2-Induced T-Cell Leukemia. Blood, 2011, 118, 4637-4637.	1.4	0
29	Murine Leukemias with Retroviral Insertions at Lmo2 Are Predictive of the Leukemias Induced in SCID-X1 Patients Following Retroviral Gene Therapy. PLoS Genetics, 2009, 5, e1000491.	3.5	66
30	The Role of JAK3 mutations in Adult T-Cell Leukemia/Lymphoma Blood, 2009, 114, 1940-1940.	1.4	0
31	Sox4 Downregulates Pu.1 Gene Expression by Binding to An Upper Regulatory Element of Pu.1, a Mechanism Contributing to Leukemogenesis Blood, 2009, 114, 3979-3979.	1.4	0
32	Leukemia takes center (late) stage. Blood, 2008, 112, 2175-2176.	1.4	1
33	Lmo2 Induces T-Cell Leukemia with Epigenetic Deregulation of CD4 Blood, 2008, 112, 3361-3361.	1.4	0
34	Murine Leukemias with Insertional Mutations at Lmo2 Are Highly Predicitive of Leukemias Induced Following Gene Therapy in SCID-X1 Patients. Blood, 2008, 112, 4629-4629.	1.4	0
35	RIS defines risk. Blood, 2007, 110, 1704-1704.	1.4	0
36	Insertional Activation of GLI2 in Adult T-Cell Leukemia/Lymphoma Blood, 2007, 110, 4149-4149.	1.4	0

#	Article	IF	CITATIONS
37	Gene Therapy Insertional Mutagenesis Insights. Science, 2004, 303, 333-333.	12.6	230
38	ER Stress Induces Cleavage of Membrane-Bound ATF6 by the Same Proteases that Process SREBPs. Molecular Cell, 2000, 6, 1355-1364.	9.7	1,588