
Marco Beyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6900511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing septoria leaf blotch forecasts in winter wheat I: the effect of temperature on the temporal distance between critical rainfall periods and the breaking of the control threshold. Journal of Plant Diseases and Protection, 2022, 129, 37-44.	1.6	4
2	Enhancing septoria leaf blotch forecasts in winter wheat II: model architecture and validation results. Journal of Plant Diseases and Protection, 2022, 129, 45-51.	1.6	3
3	<i>Drosophila suzukii</i> population dynamics and control efficiency of mineral dusts with a focus on grape protection. Journal of Applied Entomology, 2022, 146, 396-407.	0.8	1
4	Frequency of Deoxynivalenol Concentrations above the Maximum Limit in Raw Winter Wheat Grain during a 12-Year Multi-Site Survey. Agronomy, 2021, 11, 960.	1.3	6
5	Monitoring Wheat Leaf Rust and Stripe Rust in Winter Wheat Using High-Resolution UAV-Based Red-Green-Blue Imagery. Remote Sensing, 2020, 12, 3696.	1.8	27
6	A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences (Switzerland), 2020, 10, 3092.	1.3	250
7	Diversity of Mobile Genetic Elements in the Mitogenomes of Closely Related Fusarium culmorum and F. graminearum sensu stricto Strains and Its Implication for Diagnostic Purposes. Frontiers in Microbiology, 2020, 11, 1002.	1.5	11
8	Searching molecular determinants of sensitivity differences towards four demethylase inhibitors in Fusarium graminearum field strains. Pesticide Biochemistry and Physiology, 2020, 164, 209-220.	1.6	7
9	BotRisk: simulating the annual bunch rot risk on grapevines (Vitis vinifera L. cv. Riesling) based on meteorological data. International Journal of Biometeorology, 2020, 64, 1571-1582.	1.3	3
10	The debate on a loss of biodiversity: can we derive evidence from the monitoring of major plant pests and diseases in major crops?. Journal of Plant Diseases and Protection, 2020, 127, 811-819.	1.6	4
11	An improved life cycle impact assessment principle for assessing the impact of land use on ecosystem services. Science of the Total Environment, 2019, 693, 133374.	3.9	39
12	Natural compounds for controlling Drosophila suzukii. A review. Agronomy for Sustainable Development, 2019, 39, 1.	2.2	25
13	Semi-Minimal Pruned Hedge: A Potential Climate Change Adaptation Strategy in Viticulture. Agronomy, 2019, 9, 173.	1.3	14
14	An eight-year survey of wheat shows distinctive effects of cropping factors on different Fusarium species and associated mycotoxins. European Journal of Agronomy, 2019, 105, 62-77.	1.9	56
15	Yellow rust does not like cold winters. But how to find out which temperature and time frames could be decisive in vivo?. Journal of Plant Pathology, 2019, 101, 539-546.	0.6	6
16	Winter honey bee colony losses, Varroa destructor control strategies, and the role of weather conditions: Results from a survey among beekeepers. Research in Veterinary Science, 2018, 118, 52-60.	0.9	43
17	Efficacy of fenhexamid treatments against Botrytis cinerea in grapevine as affected by time of application and meteorological conditions. Crop Protection, 2018, 110, 1-13.	1.0	8
18	Antifungal Activity of Saponins from the Fruit Pericarp of <i>Sapindus mukorossi</i> against <i>Venturia inaequalis</i> and <i>Botrytis cinerea</i> . Plant Disease, 2018, 102, 991-1000.	0.7	25

MARCO BEYER

#	Article	IF	CITATIONS
19	Development of a Highly Sensitive FcMito qPCR Assay for the Quantification of the Toxigenic Fungal Plant Pathogen Fusarium culmorum. Toxins, 2018, 10, 211.	1.5	23
20	Pesticide residue profiles in bee bread and pollen samples and the survival of honeybee colonies—a case study from Luxembourg. Environmental Science and Pollution Research, 2018, 25, 32163-32177.	2.7	27
21	Overall efficacies of combined measures for controlling grape bunch rot can be estimated by multiplicative consideration of individual effects. Oeno One, 2017, 51, 401-407.	0.7	1
22	A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes. Frontiers in Microbiology, 2016, 7, 406.	1.5	124
23	Composition and evaluation of a novel web-based decision support system for grape black rot control. European Journal of Plant Pathology, 2016, 144, 785-798.	0.8	15
24	Meteorological conditions determine the thermal-temporal position of the annual Botrytis bunch rot epidemic on Vitis vinifera L. cv. Riesling grapes. Oeno One, 2016, 50, .	0.7	20
25	The Luxembourg database of trichothecene type B F. graminearum and F. culmorum producers. Bioinformation, 2016, 12, 1-3.	0.2	14
26	<i>Fusarium</i> species and chemotypes associated with fusarium head blight and fusarium root rot on wheat in Sardinia. Plant Pathology, 2015, 64, 972-979.	1.2	40
27	Virus Status, Varroa Levels, and Survival of 20 Managed Honey Bee Colonies Monitored in Luxembourg Between the Summer of 2011 and the Spring of 2013. Journal of Apicultural Science, 2015, 59, 59-73.	0.1	10
28	Economics of a decision–support system for managing the main fungal diseases of winter wheat in the Grand-Duchy of Luxembourg. Field Crops Research, 2015, 172, 32-41.	2.3	23
29	Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions. Science of the Total Environment, 2015, 532, 1-13.	3.9	55
30	Development of an FgMito assay: A highly sensitive mitochondrial based qPCR assay for quantification of Fusarium graminearum sensu stricto. International Journal of Food Microbiology, 2015, 210, 16-23.	2.1	21
31	Flower Debris Removal Delays Grape Bunch Rot Epidemic. American Journal of Enology and Viticulture, 2015, 66, 548-553.	0.9	10
32	Do single, double or triple fungicide sprays differentially affect the grain quality in winter wheat?. Field Crops Research, 2015, 183, 257-266.	2.3	6
33	Forecasting the breaching of the control threshold for <i>Ceutorhynchus pallidactylus</i> in oilseed rape. Agricultural and Forest Entomology, 2015, 17, 71-76.	0.7	8
34	Postponing First Shoot Topping Reduces Grape Cluster Compactness and Delays Bunch Rot Epidemic. American Journal of Enology and Viticulture, 2015, 66, 164-176.	0.9	31
35	A survey on some factors potentially affecting losses of managed honey bee colonies in Luxembourg over the winters 2010/2011 and 2011/2012. Journal of Apicultural Research, 2014, 53, 43-56.	0.7	26
36	Shifted migration of the rape stem weevil Ceutorhynchus napi (Coleoptera: Curculionidae) linked to climate change. European Journal of Entomology, 2014, 111, 243-250.	1.2	13

MARCO BEYER

#	Article	IF	CITATIONS
37	Epidemiology, identification and disease management of grape black rot and potentially useful metabolites of black rot pathogens for industrial applications–Âa review. Annals of Applied Biology, 2014, 165, 305-317.	1.3	25
38	Evidence for a reversible drought induced shift in the species composition of mycotoxin producing Fusarium head blight pathogens isolated from symptomatic wheat heads. International Journal of Food Microbiology, 2014, 182-183, 51-56.	2.1	36
39	A High-Resolution Cumulative Degree Day-Based Model to Simulate Phenological Development of Grapevine. American Journal of Enology and Viticulture, 2014, 65, 72-80.	0.9	56
40	Differences between the succinate dehydrogenase sequences of isopyrazam sensitive Zymoseptoria tritici and insensitive Fusarium graminearum strains. Pesticide Biochemistry and Physiology, 2013, 105, 28-35.	1.6	41
41	FcStuA from Fusarium culmorum Controls Wheat Foot and Root Rot in a Toxin Dispensable Manner. PLoS ONE, 2013, 8, e57429.	1.1	41
42	Fractal dimension and shape parameters of asexual Fusarium spores from selected species: Which species can be distinguished?. Journal of Plant Diseases and Protection, 2012, 119, 8-14.	1.6	9
43	Ensemble-based analysis of regional climate change effects on the cabbage stem weevil (<i>Ceutorhynchus pallidactylus</i> (Mrsh.)) in winter oilseed rape (<i>Brassica napus</i> L.). Journal of Agricultural Science, 2012, 150, 191-202.	0.6	25
44	Spring air temperature accounts for the bimodal temporal distribution of Septoria tritici epidemics in the winter wheat stands of Luxembourg. Crop Protection, 2012, 42, 250-255.	1.0	18
45	A note on the insecticide sensitivity status of Meligethes species (Coleoptera: Nitidulidae) in Luxembourg. Journal of Plant Diseases and Protection, 2011, 118, 134-140.	1.6	4
46	Comparative Analysis of Genetic Chemotyping Methods for Fusarium: Tri13 Polymorphism Does not Discriminate between 3- and 15-acetylated Deoxynivalenol Chemotypes in Fusarium graminearum. Journal of Phytopathology, 2011, 159, 700-704.	0.5	24
47	Evidence for natural resistance towards trifloxystrobin in Fusarium graminearum. European Journal of Plant Pathology, 2011, 130, 239-248.	0.8	38
48	Estimating deoxynivalenol contents of wheat samples containing different levels of Fusarium-damaged kernels by diffuse reflectance spectrometry and partial least square regression. International Journal of Food Microbiology, 2010, 142, 370-374.	2.1	31
49	Effects of Fusarium infection on the amino acid composition of winter wheat grain. Food Chemistry, 2008, 111, 750-754.	4.2	6
50	Effects of cultivar, agronomic practices, geographic location, and meteorological conditions on the composition of selected <i>Fusarium</i> species on wheat heads. Canadian Journal of Plant Pathology, 2008, 30, 46-57.	0.8	34
51	Fate of deoxynivalenol in contaminated wheat grain during preparation of Egyptian â€ ⁻ balila'. International Journal of Food Sciences and Nutrition, 2007, 58, 169-177.	1.3	11
52	Characterizing Meteorological Scenarios Favorable for Septoria tritici Infections in Wheat and Estimation of Latent Periods. Plant Disease, 2007, 91, 1445-1449.	0.7	37
53	Mould germination: Data treatment and modelling. International Journal of Food Microbiology, 2007, 114, 17-24.	2.1	38
54	Estimating mycotoxin contents of Fusarium-damaged winter wheat kernels. International Journal of Food Microbiology, 2007, 119, 153-158.	2.1	40

MARCO BEYER

#	Article	IF	CITATIONS
55	Comparison of the declining triazole sensitivity of Gibberella zeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Protection, 2007, 26, 683-690.	1.0	101
56	Rapid Detection of Mycosphaerella graminicola in Wheat Using Reverse Transcription-PCR Assay. Journal of Phytopathology, 2005, 153, 674-679.	0.5	27
57	Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production. International Journal of Food Microbiology, 2005, 98, 233-240.	2.1	49
58	Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration. Planta, 2005, 220, 474-485.	1.6	54
59	Germination of Gibberella zeae ascospores as affected by age of spores after discharge and environmental factors. European Journal of Plant Pathology, 2005, 111, 381-389.	0.8	29
60	Changes in strain and deposition of cuticle in developing sweet cherry fruit. Physiologia Plantarum, 2004, 120, 667-677.	2.6	83
61	Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica, 2004, 137, 339-351.	0.6	165
62	Surface characteristics of sweet cherry fruit: stomata-number, distribution, functionality and surface wetting. Scientia Horticulturae, 2003, 97, 265-278.	1.7	57
63	Studies on Water Transport through the Sweet Cherry Fruit Surface. 7. Fe3+ and Al3+ Reduce Conductance for Water Uptake. Journal of Agricultural and Food Chemistry, 2002, 50, 7600-7608.	2.4	11
64	Analysing fruit shape in sweet cherry (Prunus avium L.). Scientia Horticulturae, 2002, 96, 139-150.	1.7	87
65	Studies on Water Transport Through the Sweet Cherry Fruit Surface: IV. Regions of Preferential Uptake. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 637-641.	0.5	35
66	Studies on Water Transport through the Sweet Cherry Fruit Surface: V. Conductance for Water Uptake. Journal of the American Society for Horticultural Science, 2002, 127, 325-332.	0.5	33
67	Whole-genome single nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Frontiers in Microbiology, 0, 13, .	1.5	4