List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/690046/publications.pdf Version: 2024-02-01

Ιλεμγιινό Ιυ

#	Article	IF	CITATIONS
1	A non-centrosymmetric square lattice with an axial–bending coupling. Materials and Design, 2022, 216, 110532.	7.0	6
2	Encoding of direct 4D printing of isotropic single-material system for double-curvature and multimodal morphing. Extreme Mechanics Letters, 2022, 54, 101779.	4.1	12
3	Micropolar homogenization of wavy tetra-chiral and tetra-achiral lattices to identify axial–shear coupling and directional negative Poisson's ratio. Materials and Design, 2021, 201, 109483.	7.0	17
4	Thermomechanically Triggered Reversible Multiâ€Transformability of a Single Material System by Energy Swapping and Shape Memory Effects. Advanced Functional Materials, 2021, 31, 2101395.	14.9	17
5	Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction. Materials, 2021, 14, 4262.	2.9	5
6	Effect of disconnection of deformable units on the mobility and stiffness of 3D prismatic modular origami structures using angular kinematics. Scientific Reports, 2021, 11, 18259.	3.3	5
7	Topologically reconfigurable mechanical metamaterials with motion structures. Mechanics of Materials, 2020, 143, 103317.	3.2	7
8	Effect of crosslinking agents on drug distribution in chitosan hydrogel for targeted drug delivery to treat cancer. Journal of Polymer Research, 2020, 27, 1.	2.4	13
9	Reconfigurable mesostructures with prestressing, reverse stiffness and shape memory effects. Extreme Mechanics Letters, 2020, 35, 100625.	4.1	11
10	Design of thermal diodes using asymmetric thermal deformation of a Kirigami structure. Materials and Design, 2020, 193, 108734.	7.0	14
11	A Passive Thermal Switch with Kirigamiâ€Inspired Mesostructures. Advanced Engineering Materials, 2019, 21, 1900225.	3.5	20
12	Thermomechanically Tunable Elastic Metamaterials With Compliant Porous Structures. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, 021004.	1.4	8
13	Nonreciprocal Linear Transmission of Sound in a Viscous Environment with Broken <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>P</mml:mi> Symmetry. Physical Review Letters, 2018, 120, 204501.</mml:math 	7.8	18
14	A mechanism-based architected material: A hierarchical approach to design Poisson's ratio and stiffness. Mechanics of Materials, 2018, 125, 14-25.	3.2	22
15	Enhanced Coarse-Graining of Thermoplastic Polyurethane Elastomer for Multiscale Modeling. Journal of Engineering Materials and Technology, Transactions of the ASME, 2017, 139, .	1.4	13
16	Understanding the shape memory behavior of thermoplastic polyurethane elastomers with coarse-grained molecular dynamics simulations. MRS Advances, 2017, 2, 375-380.	0.9	4
17	Thermoviscoelastic modeling of a nonpneumatic tire with a lattice spoke. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231, 241-252.	1.9	22

18 2D Motion Structures of N-Fold Rotational Symmetry. , 2017, , .

#	Article	IF	CITATIONS
19	Tunable Triangular Cellular Structures by Pneumatic Control of Dual Channel Actuators. , 2017, , .		о
20	Prediction of Hysteresis of a Thermoplastic Polyurethane Using Coarse-Grained Molecular Dynamics. , 2016, , .		1
21	Multiscale modeling of a natural rubber: Bridging a coarse-grained molecular model to the rubber network theory. Polymer, 2016, 101, 34-47.	3.8	28
22	Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting. Journal of Visualized Experiments, 2016, , .	0.3	3
23	Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior. Transactions of the Korean Society of Mechanical Engineers, A, 2016, 40, 353-362.	0.2	3
24	Hyperelastic Multi-Scale Modeling of a Thermoplastic Polyurethane Elastomer Using Molecular Mechanics. , 2015, , .		5
25	Reconfigurable Compliant Cellular Material With Programmable Compliant Cellular Structure. , 2015, , .		1
26	Multilevel Metal Flow-Fill Analysis of Centrifugal Casting for Indirect Additive Manufacturing of Lattice Structures. , 2015, , .		1
27	Thermal Stress Analysis of Gypsum Shell Cracking in Polyjet-Based Rapid Casting of Cellular Metals. , 2015, , .		0
28	Shape control of a beam consisting of triangular meso-structure segments with multiple V-shaped flexure springs. International Journal of Mechanisms and Robotic Systems, 2015, 2, 144.	0.1	1
29	Mechanical metamaterials with 3D compliant porous structures. Composite Structures, 2015, 132, 874-884.	5.8	21
30	Compliant Cellular Materials With Elliptical Holes for Extremely High Positive and Negative Poisson's Ratios. Journal of Engineering Materials and Technology, Transactions of the ASME, 2015, 137, .	1.4	12
31	Indirect additive manufacturing based casting of a periodic 3D cellular metal – Flow simulation of molten aluminum alloy. Journal of Manufacturing Processes, 2015, 17, 28-40.	5.9	49
32	Continuum Model for Effective Properties of Orthotropic Octet-Truss Lattice Materials. , 2014, , .		10
33	Indirect Additive Manufacturing Based Casting (I AM Casting) of a Lattice Structure. , 2014, , .		4
34	Compliant cellular materials with compliant porous structures: A mechanism based materials design. International Journal of Solids and Structures, 2014, 51, 3889-3903.	2.7	18
35	Three-Dimensional Compliant Cellular Materials: A Mechanism Based Material Design. , 2014, ,		0
36	Optimisation of geometry and material properties of a non-pneumatic tyre for reducing rolling resistance. International Journal of Vehicle Design, 2014, 66, 193.	0.3	50

#	Article	IF	CITATIONS
37	Porous materials with high negative Poisson's ratios—a mechanism based material design. Smart Materials and Structures, 2013, 22, 084007.	3.5	15
38	Compliant cellular structures: Application to a passive morphing airfoil. Composite Structures, 2013, 106, 560-569.	5.8	85
39	A Numerical Study of a Molten Aluminum for Investment Casting of 3D Cellular Metals. , 2013, , .		1
40	An Experimental Study on the Mode I Fracture Behavior of Hexagonal Honeycombs. , 2013, , .		0
41	Effects of geometric and material properties on electrical power harvested from a bimorph piezoelectric cantilever beam. Multidiscipline Modeling in Materials and Structures, 2013, 9, 391-409.	1.3	5
42	Cellular Materials With Extremely High Negative and Positive Poisson's Ratios: A Mechanism Based Material Design. , 2013, , .		3
43	Rolling Resistance of a Nonpneumatic Tire Having a Porous Elastomer Composite Shear Band. Tire Science and Technology, 2013, 41, 154-173.	0.4	43
44	Design of Honeycombs for Modulus and Yield Strain in Shear. Journal of Engineering Materials and Technology, Transactions of the ASME, 2012, 134, .	1.4	35
45	Vibration Analysis of Non-Pneumatic Tires With Hexagonal Lattice Spokes. , 2012, , .		6
46	Nonlinear Material Modeling of a Truck Tire, Pavement and its Effect on Contact Stresses. , 2012, , .		2
47	A Study on the Aerodynamic Drag of a Non-Pneumatic Tire. , 2012, , .		4
48	Lateral Stiffness and Dynamic Properties of Separable Polyurethane Tires for a Folding Bike. , 2012, , .		1
49	The Dynamic Properties of a Non-Pneumatic Tire With Flexible Auxetic Honeycomb Spokes. , 2012, , .		10
50	A Novel Compliant Fixation Plate for Bone Fractures. , 2012, , .		0
51	Design of Honeycomb Mesostructures for Crushing Energy Absorption. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	37
52	Flexible cellular solid spokes of a non-pneumatic tire. Composite Structures, 2012, 94, 2285-2295.	5.8	115
53	Aluminum Taper Bristle-Shaped Shear Band for a Nonpneumatic Tire. Tire Science and Technology, 2012, 40, 152-170.	0.4	8
54	Shear Compliant Hexagonal Cellular Solids With a Shape Memory Alloy. , 2011, , .		6

#	Article	IF	CITATIONS
55	Effects of Geometric and Material Properties on Electrical Power Harvested From a Bimorph Piezoelectric Cantilever Beam. , 2011, , .		0
56	Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Materials & Design, 2011, 32, 512-524.	5.1	133
57	Separable Polyurethane Solid Tires for a Folding Bike. , 2011, , .		1
58	Contact Pressure of a Non-Pneumatic Tire With Three-Dimensional Cellular Spokes. , 2011, , .		8
59	Optimization of Honeycomb Cellular Meso-Structures for High Speed Impact Energy Absorption. , 2011, , ,		4
60	Finite Element Analysis of Tire and Pavement Interaction. , 2011, , .		0
61	Passive Morphing Airfoil With Honeycombs. , 2011, , .		2
62	Optimization of a Non-Pneumatic Tire for Reduced Rolling Resistance. , 2011, , .		5
63	Hyperelastic Constitutive Modeling of Hexagonal Honeycombs Subjected to In-Plane Shear Loading. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	1.4	30
64	Effects of Cellular Shear Bands on Interaction between a Non-pneumatic Tire and Sand. , 2010, , .		5
65	Experimental Damage Characterization of Hexagonal Honeycombs Subjected to In-Plane Shear Loading. , 2010, , .		6
66	Compliant Hexagonal Meso-Structures Having Both High Shear Strength and High Shear Strain. , 2010, , .		6
67	Design of Sinusoidal Auxetic Structures for High Shear Flexure. , 2010, , .		13
68	Design of Chiral Honeycomb Meso-Structures for High Shear Flexure. , 2010, , .		14
69	Design of Honeycomb Meta-Materials for High Shear Flexure. , 2009, , .		28
70	Cyclic Energy Loss of Honeycombs Under In-Plane Shear Loading. , 2009, , .		6
71	Nonlinear Elastic Constitutive Relations of Auxetic Honeycombs. , 2009, , .		3
72	Transverse Cracking of M40J/PMR-II-50 Composites under Thermal—Mechanical Loading: Part I — Characterization of Main and Interaction Effects using Statistical Design of Experiments. Journal of Composite Materials, 2007, 41, 1009-1031.	2.4	3

4

#	Article	IF	CITATIONS
73	An Initial and Progressive Failure Analysis for Cryogenic Composite Fuel Tank Design. Journal of Composite Materials, 2007, 41, 2545-2568.	2.4	13
74	Transverse Cracking of M40J/PMR-II-50 Composites under Thermal—Mechanical Loading. Journal of Composite Materials, 2007, 41, 1067-1086.	2.4	7
75	Thermo-Mechanical Analysis of Composites Under Combined Conduction Heating and Large Deflection Bending. , 2005, , 243.		0
76	Characterization of Microcrack Development in BMI-Carbon Fiber Composite under Stress and Thermal Cycling. Journal of Composite Materials, 2004, 38, 2007-2024.	2.4	38
77	Design of Cellular Shear Bands of a Non-Pneumatic Tire -Investigation of Contact Pressure. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 3, 598-606.	0.4	53
78	Method to Design Honeycombs for a Shear Flexible Structure. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 3, 588-597.	0.4	18
79	Static Contact Behaviors of a Non-Pneumatic Tire with Hexagonal Lattice Spokes. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 6, 1518-1527.	0.4	29
80	A Computational Study of the Flow Around an Isolated Non-Pneumatic Tire. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 7, 405-412.	0.4	15
81	Optimization of Nonpneumatic Tire with Hexagonal Lattice Spokes for Reducing Rolling Resistance. , 0,		19

82 Deformation and Heat Generation in a Nonpneumatic Tire with Lattice Spokes. , 0, , .