Giovanni Vozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6900301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biofabrication: reappraising the definition of an evolving field. Biofabrication, 2016, 8, 013001.	3.7	523
2	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	4.9	465
3	Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials, 2003, 24, 2533-2540.	5.7	394
4	Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nature Communications, 2013, 4, 1964.	5.8	383
5	Blends of Poly-(ε-caprolactone) and Polysaccharides in Tissue Engineering Applications. Biomacromolecules, 2005, 6, 1961-1976.	2.6	304
6	4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 2017, 20, 577-591.	8.3	292
7	Microsyringe-Based Deposition of Two-Dimensional and Three-Dimensional Polymer Scaffolds with a Well-Defined Geometry for Application to Tissue Engineering. Tissue Engineering, 2002, 8, 1089-1098.	4.9	277
8	Genipin-crosslinked chitosan/gelatin blends for biomedical applications. Journal of Materials Science: Materials in Medicine, 2008, 19, 889-898.	1.7	229
9	Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 2009, 91A, 447-453.	2.1	157
10	Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. European Journal of Neuroscience, 2007, 25, 2741-2754.	1.2	128
11	Criticality of the Biological and Physical Stimuli Array Inducing Resident Cardiac Stem Cell Determination. Stem Cells, 2008, 26, 2093-2103.	1.4	98
12	A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication, 2009, 1, 045002.	3.7	85
13	Microfabricated PLGA scaffolds: a comparative study for application to tissue engineering. Materials Science and Engineering C, 2002, 20, 43-47.	3.8	84
14	Tuning polycaprolactone–carbon nanotube composites for bone tissue engineering scaffolds. Materials Science and Engineering C, 2012, 32, 152-159.	3.8	82
15	Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting. Biofabrication, 2020, 12, 025013.	3.7	78
16	Substrate stiffness influences high resolution printing of living cells with an ink-jet system. Journal of Bioscience and Bioengineering, 2011, 112, 79-85.	1.1	69
17	Organic Field Effect Transistors for Textile Applications. IEEE Transactions on Information Technology in Biomedicine, 2005, 9, 319-324.	3.6	68
18	Chitosan/gelatin blends for biomedical applications. Journal of Biomedical Materials Research - Part A, 2008, 86A, 311-322.	2.1	68

#	Article	IF	CITATIONS
19	Enzymatically crosslinked porous composite matrices for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2010, 92A, 137-151.	2.1	63
20	Silk Fibroin/ <scp>G</scp> elatin Blend Films Crosslinked with Enzymes for Biomedical Applications. Macromolecular Bioscience, 2013, 13, 1492-1510.	2.1	58
21	Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: A numerical model-based approach. Chemical Engineering Journal, 2018, 340, 15-23.	6.6	58
22	Collagenâ€gelatinâ€genipinâ€hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: <i>In vitro</i> evidences. Journal of Biomedical Materials Research - Part A, 2014, 102, 1415-1421.	2.1	54
23	A new path to platelet production through matrix sensing. Haematologica, 2017, 102, 1150-1160.	1.7	51
24	Pectin-GPTMS-Based Biomaterial: toward a Sustainable Bioprinting of 3D scaffolds for Tissue Engineering Application. Biomacromolecules, 2020, 21, 319-327.	2.6	51
25	An Autologously Generated Platelet-Rich Plasma Suturable Membrane May Enhance Peripheral Nerve Regeneration after Neurorraphy in an Acute Injury Model of Sciatic Nerve Neurotmesis. Journal of Reconstructive Microsurgery, 2014, 30, 617-626.	1.0	48
26	Gelatin–genipinâ€based biomaterials for skeletal muscle tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2763-2777.	1.6	48
27	Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nature Communications, 2020, 11, 1182.	5.8	42
28	Bone scaffolds with homogeneous and discrete gradient mechanical properties. Materials Science and Engineering C, 2013, 33, 28-36.	3.8	41
29	Characterization of Tissue-Engineered Scaffolds Microfabricated with PAM. Tissue Engineering, 2006, 12, 547-558.	4.9	40
30	Rapidâ€prototyped and saltâ€leached PLGA scaffolds condition cell morphoâ€functional behavior. Journal of Biomedical Materials Research - Part A, 2008, 85A, 466-476.	2.1	39
31	Simplified cell culture method for the diagnosis of atypical primary ciliary dyskinesia. Thorax, 2009, 64, 1077-1081.	2.7	39
32	<i>In vitro</i> liver model using microfabricated scaffolds in a modular bioreactor. Biotechnology Journal, 2010, 5, 232-241.	1.8	39
33	Characterisation of blends between poly(ε-caprolactone) and polysaccharides for tissue engineering applications. Materials Science and Engineering C, 2009, 29, 2174-2187.	3.8	38
34	New biomedical devices with selective peptide recognition properties. Part 1: Characterization and cytotoxicity of molecularly imprinted polymers. Journal of Cellular and Molecular Medicine, 2007, 11, 1367-1376.	1.6	37
35	PAM2 (Piston Assisted Microsyringe): A New Rapid Prototyping Technique for Biofabrication of Cell Incorporated Scaffolds. Tissue Engineering - Part C: Methods, 2011, 17, 229-237.	1.1	36
36	Poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate)/poly(ϵâ€caprolactone) blends for tissue engineering applications in the form of hollow fibers. Journal of Biomedical Materials Research - Part A, 2008, 85A, 938-953.	2.1	35

#	Article	IF	CITATIONS
37	Melt-extruded guides for peripheral nerve regeneration. Part I: Poly(ε-caprolactone). Biomedical Microdevices, 2009, 11, 1037-1050.	1.4	34
38	Molecularly imprinted submicronspheres for applications in a novel model biosensor-film. Sensors and Actuators B: Chemical, 2010, 150, 394-401.	4.0	34
39	Cooperation of Biological and Mechanical Signals in Cardiac Progenitor Cell Differentiation. Advanced Materials, 2011, 23, 514-518.	11.1	34
40	Human Periosteal Derived Stem Cell Potential: The Impact of age. Stem Cell Reviews and Reports, 2015, 11, 487-500.	5.6	33
41	Microfabricated fractal branching networks. Journal of Biomedical Materials Research Part B, 2004, 71A, 326-333.	3.0	32
42	Pressureâ€activated microsyringe composite scaffold of poly(<scp>L</scp> â€lactic acid) and carbon nanotubes for bone tissue engineering. Journal of Applied Polymer Science, 2013, 129, 528-536.	1.3	32
43	Material and structural tensile properties of the human medial patello-femoral ligament. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 141-148.	1.5	32
44	Enzymaticallyâ€Modified Meltâ€Extruded Guides for Peripheral Nerve Repair. Engineering in Life Sciences, 2008, 8, 226-237.	2.0	31
45	A novel 3D in vitro model of the human gut microbiota. Scientific Reports, 2020, 10, 21499.	1.6	30
46	A flexible bioreactor system for constructing in vitro tissue and organ models. Biotechnology and Bioengineering, 2011, 108, 2129-2140.	1.7	29
47	Open-source CAD-CAM simulator of the extrusion-based bioprinting process. Bioprinting, 2021, 24, e00172.	2.9	29
48	Poly(ester urethane) Guides for Peripheral Nerve Regeneration. Macromolecular Bioscience, 2011, 11, 245-256.	2.1	28
49	Innovative tissue engineering structures through advanced manufacturing technologies. Journal of Materials Science: Materials in Medicine, 2004, 15, 305-310.	1.7	27
50	Modeling the Three-Dimensional Bioprinting Process of β-Sheet Self-Assembling Peptide Hydrogel Scaffolds. Frontiers in Medical Technology, 2020, 2, 571626.	1.3	27
51	Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. Journal of Materials Chemistry, 2007, 17, 1248.	6.7	24
52	A High-Throughput Bioreactor System for Simulating Physiological Environments. IEEE Transactions on Industrial Electronics, 2008, 55, 3273-3280.	5.2	24
53	SOFTâ€MI: A novel microfabrication technique integrating softâ€ŀithography and molecular imprinting for tissue engineering applications. Biotechnology and Bioengineering, 2010, 106, 804-817.	1.7	23
54	Electrospun Structures Made of a Hydrolyzed Keratin-Based Biomaterial for Development of in vitro Tissue Models. Frontiers in Bioengineering and Biotechnology, 2019, 7, 174.	2.0	23

#	Article	lF	CITATIONS
55	Electrical and Mechanical Characterisation of Single Wall Carbon Nanotubes Based Composites for Tissue Engineering Applications. Journal of Nanoscience and Nanotechnology, 2013, 13, 188-197.	0.9	22
56	Cardiac tissue regeneration: A preliminary study on carbonâ€based nanotubes gelatin scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2750-2762.	1.6	22
57	Robotic platform and path planning algorithm for in situ bioprinting. Bioprinting, 2021, 22, e00139.	2.9	22
58	Microfabrication of fractal polymeric structures for capillary morphogenesis: Applications in therapeutic angiogenesis and in the engineering of vascularized tissue. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 462-468.	1.6	21
59	Role of IGF1 and IGF1/VEGF on Human Mesenchymal Stromal Cells in Bone Healing: Two Sources and Two Fates. Tissue Engineering - Part A, 2014, 20, 2473-2482.	1.6	21
60	Multimaterial, heterogeneous, and multicellular three-dimensional bioprinting. MRS Bulletin, 2017, 42, 578-584.	1.7	21
61	A new 3D concentration gradient maker and its application in building hydrogels with a 3D stiffness gradient. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 256-264.	1.3	21
62	Pectin as Rheology Modifier of a Gelatin-Based Biomaterial Ink. Materials, 2021, 14, 3109.	1.3	21
63	Endothelial cell function on 2D and 3D micro-fabricated polymer scaffolds: applications in cardiovascular tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 37-51.	1.9	20
64	Realization of conducting polymer actuators using a controlled volume microsyringe system. Smart Materials and Structures, 2006, 15, 279-287.	1.8	20
65	PAMâ€Microfabricated Polyurethane Scaffolds: <i>in vivo</i> and <i>in vitro</i> Preliminary Studies. Macromolecular Bioscience, 2008, 8, 60-68.	2.1	20
66	Polyurethane unimorph bender microfabricated with Pressure Assisted Microsyringe (PAM) for biomedical applications. Materials Science and Engineering C, 2009, 29, 1835-1841.	3.8	20
67	Three-dimensional Microfabricated Scaffolds with Cardiac Extracellular Matrix-Like Architecture. International Journal of Artificial Organs, 2010, 33, 885-894.	0.7	20
68	Automated software for analysis of ciliary beat frequency and metachronal wave orientation in primary ciliary dyskinesia. European Archives of Oto-Rhino-Laryngology, 2010, 267, 897-902.	0.8	20
69	Sensing scaffolds to monitor cellular activity using impedance measurements. Biosensors and Bioelectronics, 2011, 26, 3303-3308.	5.3	20
70	The PAM ² system: a multilevel approach for fabrication of complex threeâ€dimensional microstructures. Rapid Prototyping Journal, 2012, 18, 299-307.	1.6	19
71	ECM Remodeling in Breast Cancer with Different Grade: Contribution of 2Dâ€DIGE Proteomics. Proteomics, 2018, 18, e1800278.	1.3	19
72	Soft-molecular imprinted electrospun scaffolds to mimic specific biological tissues. Biofabrication, 2018, 10, 045005.	3.7	19

#	Article	IF	CITATIONS
73	Cell-Free Demineralized Bone Matrix for Mesenchymal Stem Cells Survival and Colonization. Materials, 2019, 12, 1360.	1.3	19
74	Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1986-1997.	1.3	18
75	Realisation and characterization of conductive hollow fibers for neuronal tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1107-1119.	1.6	17
76	3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomaterialia, 2017, 55, 310-322.	4.1	16
77	An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability. Biofabrication, 2021, 13, 035027.	3.7	16
78	Combining Inkjet Printing and Sol-Gel Chemistry for Making pH-Sensitive Surfaces. Current Topics in Medicinal Chemistry, 2015, 15, 271-278.	1.0	16
79	A new approach to fabricate agarose microstructures. Polymers for Advanced Technologies, 2013, 24, 895-902.	1.6	15
80	Genipin diffusion and reaction into a gelatin matrix for tissue engineering applications. , 2017, 105, 473-480.		15
81	In vitro lifespan and senescent behaviour of human periosteal derived stem cells. Bone, 2016, 88, 1-12.	1.4	14
82	Molecular Imprinting Strategies for Tissue Engineering Applications: A Review. Polymers, 2021, 13, 548.	2.0	14
83	Endothelial cell adhesion on bioerodable polymers. Journal of Materials Science: Materials in Medicine, 2001, 12, 613-619.	1.7	13
84	Finite element modelling and design of a concentration gradient generating bioreactor: Application to biological pattern formation and toxicology. Toxicology in Vitro, 2010, 24, 1828-1837.	1.1	13
85	Quasi-linear viscoelastic properties of the human medial patello-femoral ligament. Journal of Biomechanics, 2015, 48, 4297-4302.	0.9	13
86	The control of stem cell morphology and differentiation using three-dimensional printed scaffold architecture. MRS Communications, 2017, 7, 383-390.	0.8	13
87	Physicochemical Characterization of Pectinâ€Gelatin Biomaterial Formulations for 3D Bioprinting. Macromolecular Bioscience, 2021, 21, e2100168.	2.1	13
88	A comparative study of chemical derivatisation methods for spatially differentiated cell adhesion on 2-dimensional microfabricated polymeric matrices. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 1077-1096.	1.9	12
89	Optimization of PAM Scaffolds for Neural Tissue Engineering: Preliminary Study on an SH-SY5Y Cell Line. Tissue Engineering - Part A, 2008, 14, 1017-1023.	1.6	12
90	An ink-jet printed electrical stimulation platform for muscle tissue regeneration. Bioprinting, 2018, 11, e00035.	2.9	12

#	Article	IF	CITATIONS
91	Ultrasonic mixing chamber as an effective tool for the biofabrication of fully graded scaffolds for interface tissue engineering. International Journal of Artificial Organs, 2019, 42, 586-594.	0.7	12
92	One-Pot Process: Microwave-Assisted Keratin Extraction and Direct Electrospinning to Obtain Keratin-Based Bioplastic. International Journal of Molecular Sciences, 2021, 22, 9597.	1.8	12
93	A new method for quantitative cellular imaging on 3-D scaffolds using fluorescence microscopy. IEEE Transactions on Nanobioscience, 2003, 2, 110-117.	2.2	11
94	Electroactive carbon nanotube actuators: Soft-lithographic fabrication and electro-chemical modelling. Materials Science and Engineering C, 2008, 28, 1057-1064.	3.8	11
95	HEMET: Mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism. Computer Methods and Programs in Biomedicine, 2008, 92, 121-134.	2.6	11
96	The influence of mesh topology in the abdominal wall repair process. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1220-1228.	1.6	10
97	CFD modelling of a mixing chamber for the realisation of functionally graded scaffolds. Computers and Chemical Engineering, 2016, 84, 43-48.	2.0	10
98	Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites. European Polymer Journal, 2021, 147, 110335.	2.6	10
99	Touch sensor for social robots and interactive objects affective interaction. Sensors and Actuators A: Physical, 2016, 251, 92-99.	2.0	9
100	NEW BIOARTIFICIAL SYSTEMS AND BIODEGRADABLE SYNTHETIC POLYMERS FOR CARDIAC TISSUE ENGINEERING: A PRELIMINARY SCREENING. Biomedical Engineering - Applications, Basis and Communications, 2010, 22, 497-507.	0.3	8
101	Study of the Adhesion of the Human Gut Microbiota on Electrospun Structures. Bioengineering, 2022, 9, 96.	1.6	8
102	A new library of HEMET model: Insulin effects on hepatic metabolism. Computer Methods and Programs in Biomedicine, 2009, 94, 181-189.	2.6	7
103	HEMETÎ ² : improvement of hepatocyte metabolism mathematical model. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 837-851.	0.9	7
104	New eye phantom for ophthalmic surgery. Journal of Biomedical Optics, 2014, 19, 068001.	1.4	7
105	Development of a novel micro-ablation system to realise micrometric and well-defined hydrogel structures for tissue engineering applications. Rapid Prototyping Journal, 2014, 20, 490-498.	1.6	7
106	Design and Validation of an Open-Hardware Print-Head for Bioprinting Application. Procedia Engineering, 2015, 110, 98-105.	1.2	7
107	Biomechanical, Topological and Chemical Features That Influence the Implant Success of an Urogynecological Mesh: A Review. BioMed Research International, 2016, 2016, 1-6.	0.9	7
108	Bioprinting for bone tissue engineering. Minerva Orthopedics, 2021, 72, .	0.1	7

#	Article	IF	CITATIONS
109	Controlled in vitro growth of cell microtubes: towards the realisation of artificial microvessels. Biomedical Microdevices, 2008, 10, 81-88.	1.4	6
110	Microfabricated electroactive carbon nanotube actuators. , 2001, , .		5
111	LTI Models for 3-lodothyronamine Time Dynamics: A Multiscale View. IEEE Transactions on Biomedical Engineering, 2011, 58, 3513-3517.	2.5	5
112	A Novel Method to Produce Immobilised Biomolecular Concentration Gradients to Study Cell Activities: Design and Modelling. Molecular Biotechnology, 2012, 50, 99-107.	1.3	5
113	ADMET: ADipocyte METabolism mathematical model. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1386-1391.	0.9	5
114	In vitrodevelopment of engineered muscle using a scaffold based on the pressure-activated microsyringe (PAM) technique. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 138-152.	1.3	5
115	4D Bioprinting as New Tissue Engineering Perspective. Biosciences, Biotechnology Research Asia, 2019, 16, 15-17.	0.2	5
116	Reconstruction of medial patello-femoral ligament: Comparison of two surgical techniques. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 272-278.	1.5	4
117	Rapid Prototyping Composite and Complex Scaffolds with PAM2. Methods in Molecular Biology, 2012, 868, 57-69.	0.4	4
118	Rapid Prototyping Methods for Tissue Engineering Applications. , 2008, , 95-114.		4
119	In Silico Models for Dynamic Connected Cell Cultures Mimicking Hepatocyte-Endothelial Cell-Adipocyte Interaction Circle. PLoS ONE, 2014, 9, e111946.	1.1	4
120	Pectin-Based Scaffolds for Tissue Engineering Applications. , 0, , .		4
121	Bioprinting technologies: an overview. , 2022, , 19-49.		4
122	Indirect Rapid Prototyping for Tissue Engineering. , 2015, , 153-164.		3
123	Machine design for multimaterial processing. , 2016, , 111-140.		3
124	EFFECTS OF A MODIFIED VITRECTOMY PROBE IN SMALL-GAUGE VITRECTOMY. Retina, 2017, 37, 1765-1774.	1.0	3
125	Integration of Biomechanical and Biological Characterization in the Development of Porous Poly(caprolactone)-Based Membranes for Abdominal Wall Hernia Treatment. International Journal of Polymer Science, 2018, 2018, 1-15.	1.2	3
126	Fabrication and Characterization of Gelatin/Carbon Black–Based Scaffolds for Neural Tissue Engineering Applications. Materials Performance and Characterization, 2019, 8, 301-315.	0.2	3

#	Article	IF	CITATIONS
127	Age-related Macular Degeneration: Current Knowledge of Zinc Metalloproteinases Involvement. Current Drug Targets, 2019, 20, 903-918.	1.0	3
128	Lysyl-Oxidase Dependent Extracellular Matrix Stiffness in Hodgkin Lymphomas: Mechanical and Topographical Evidence. Cancers, 2022, 14, 259.	1.7	3
129	ENMET: Endothelial Cell Metabolism Mathematical Model. , 2009, , .		2
130	Characterization of 3-lodothyronamine In Vitro Dynamics by Mathematical Modeling. Cell Biochemistry and Biophysics, 2014, 68, 37-47.	0.9	2
131	Microfabricated and multilayered PLGA structure for the development of co-cultured in vitro liver models. Bioprinting, 2020, 18, e00084.	2.9	2
132	Microsyringe based fabrication of high resolution organic structures for bioengineering applications. , 0, , .		1
133	Development of a liver model using PAM scaffolds in static and dynamic conditions. , 2007, , .		1
134	A comparative study of porous and engineered biomaterials. Biomedicine and Pharmacotherapy, 2008, 62, 487-488.	2.5	1
135	A patented drop-free trocar for ophthalmic applications: design and realization [From Mind to Market]]. IEEE Industrial Electronics Magazine, 2008, 2, 4-8.	2.3	1
136	A New Bioâ€Inspired Robot Based on Senseless Motion; Theoretical Study and Preliminary Technological Results. Multidiscipline Modeling in Materials and Structures, 2008, 4, 47-58.	0.6	1
137	CREPE: Mathematical Model for Crosstalking of Endothelial Cells and Hepatocyte Metabolism. IEEE Transactions on Biomedical Engineering, 2014, 61, 224-230.	2.5	1
138	Magnetic-Driven Pointing System: A Feasibility Study. IEEE Sensors Journal, 2015, 15, 703-714.	2.4	1
139	Characterization of Additive Manufactured Scaffolds. , 2018, , 55-78.		1
140	4D Printing: A Snapshot on an Evolving Field. Biosciences, Biotechnology Research Asia, 2021, 18, 1-4.	0.2	1
141	High-resolution microscopy assisted mechanical modeling of ultrafine electrospun network. Polymer, 2021, 230, 124050.	1.8	1
142	Characterization of Additive Manufactured Scaffolds. , 2017, , 1-25.		1
143	Microfabricated electroactive polymer benders for cell handling. , 0, , .		0
144	Microfabrication of Capillary System Using a Perfusion Cell Chamber. , 2007, , .		0

#	Article	IF	CITATIONS
145	Design and realisation of drop-free trocar for ophthalmic applications. , 2007, , .		0
146	"Cell Cross-talk" analysis in static and dynamic Multi-Compartmental Bioreactor. , 2007, , .		0
147	A novel vascular bioreactor for remodelling and testing mechanical properties of blood vessels. , 2007, , .		0
148	Nerve regeneration using novel biomaterial supports. Biomedicine and Pharmacotherapy, 2008, 62, 495-496.	2.5	0
149	TISSUE ENGINEERING: METHODS FOR GUIDING CELL DISPOSITION. , 2001, , .		0
150	Characterization of Tissue-Engineered Scaffolds Microfabricated with PAM. Tissue Engineering, 2006, .	4.9	0
151	CREPE: A First Mathematical Model for Crosstalking of Endothelial Cells and Hepatocyte Metabolism. , 2012, , .		0
152	Rapid Prototyping: Tissue Engineering. , 0, , 6917-6928.		0
153	Rapid Prototyping: Tissue Engineering. , 2017, , 1350-1361.		0