Francesco Del Giudice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6900156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel. Lab on A Chip, 2013, 13, 4263.	6.0	98
2	Relaxation time of dilute polymer solutions: A microfluidic approach. Journal of Rheology, 2017, 61, 327-337.	2.6	72
3	Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions â€~at a glance'. Scientific Reports, 2015, 5, 8831.	3.3	71
4	Rheometry-on-a-chip: measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows. Lab on A Chip, 2015, 15, 783-792.	6.0	64
5	Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluidics and Nanofluidics, 2015, 19, 95-104.	2.2	57
6	Magnetophoresis â€~meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab on A Chip, 2015, 15, 1912-1922.	6.0	56
7	When Microrheology, Bulk Rheology, and Microfluidics Meet: Broadband Rheology of Hydroxyethyl Cellulose Water Solutions. Macromolecules, 2017, 50, 2951-2963.	4.8	55
8	Shear rheology of graphene oxide dispersions. Current Opinion in Chemical Engineering, 2017, 16, 23-30.	7.8	53
9	"From the Edge to the Center― Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel. Analytical Chemistry, 2017, 89, 13146-13159.	6.5	50
10	Fluid Viscoelasticity Drives Self-Assembly of Particle Trains in a Straight Microfluidic Channel. Physical Review Applied, 2018, 10, .	3.8	38
11	Relaxation time of polyelectrolyte solutions: When <i>$\hat{1}/4$</i> -rheometry steps in charge. Journal of Rheology, 2017, 61, 13-21.	2.6	33
12	Microfluidic formation of crystal-like structures. Lab on A Chip, 2021, 21, 2069-2094.	6.0	24
13	Filling the gap between transient and steady shear rheology of aqueous graphene oxide dispersions. Rheologica Acta, 2018, 57, 293-306.	2.4	18
14	Rheological Scaling of Ionic-Liquid-Based Polyelectrolytes in Ionic Liquid Solutions. Macromolecules, 2019, 52, 2759-2771.	4.8	18
15	A Review of Microfluidic Devices for Rheological Characterisation. Micromachines, 2022, 13, 167.	2.9	18
16	Is microrheometry affected by channel deformation?. Biomicrofluidics, 2016, 10, 043501.	2.4	15
17	Controlled viscoelastic particle encapsulation in microfluidic devices. Soft Matter, 2021, 17, 8068-8077.	2.7	14
18	Viscoelastic Particle Train Formation in Microfluidic Flows Using a Xanthan Gum Aqueous Solution. Analytical Chemistry, 2021, 93, 5503-5512.	6.5	11

FRANCESCO DEL GIUDICE

#	Article	IF	CITATIONS
19	Confinement effect on the viscoelastic particle ordering in microfluidic flows: Numerical simulations and experiments. Physics of Fluids, 2022, 34, .	4.0	11
20	Simultaneous measurement of rheological properties in a microfluidic rheometer. Physics of Fluids, 2020, 32, 052001.	4.0	10
21	Viscoelastic focusing of polydisperse particle suspensions in a straight circular microchannel. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	7
22	Microfluidic Rheometry and Particle Settling: Characterizing the Effect of Polymer Solution Elasticity. Polymers, 2022, 14, 657.	4.5	1
23	Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer. Analytical Chemistry, 2022, 94, 3617-3628.	6.5	1
24	Particle manipulation through polymer solutions in microfluidic processes. AIP Conference Proceedings, 2015, , .	0.4	0