
Martin Thalfeldt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6899943/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Energy Readiness of National Building Stocks Through Benchmarking. IEEE Access, 2022, 10, 45430-45443.	2.6	8
2	Impact of internal heat gain profiles on the design cooling capacity of landscaped offices. E3S Web of Conferences, 2021, 246, 07003.	0.2	1
3	Tenant-based measured electricity use in 4 large office buildings in Tallinn, Estonia. E3S Web of Conferences, 2021, 246, 04001.	0.2	2
4	Market based renovation solutions in non-residential buildings – Why commercial buildings are not renovated to NZEB. Energy and Buildings, 2021, 248, 111169.	3.1	6
5	Microgrid Oriented modeling of space heating system based on neural networks. Journal of Building Engineering, 2021, 43, 103150.	1.6	5
6	PCSP's Diagonal Tie Connectors Thermal Bridges Impact on Energy Performance and Operational Cost: Case Study of a High-Rise Residential Building in Estonia. E3S Web of Conferences, 2020, 172, 08006.	0.2	3
7	Parametric Energy Simulations of a Nordic Detached House Heated by a Wood Stove. E3S Web of Conferences, 2020, 172, 25007.	0.2	1
8	Energy saving potential with smart thermostats in low-energy homes in cold climate. E3S Web of Conferences, 2020, 172, 09009.	0.2	0
9	Residential buildings with heat pumps peak power reduction with high performance insulation. E3S Web of Conferences, 2020, 172, 12008.	0.2	1
10	The Impact of Infiltration on Heating Systems Dimensioning in Estonian Climate. E3S Web of Conferences, 2020, 172, 05004.	0.2	4
11	Development of a Reduced Order Model of Solar Heat Gains Prediction. Energies, 2020, 13, 6316.	1.6	3
12	Office Building Tenants' Electricity Use Model for Building Performance Simulations. Energies, 2020, 13, 5541.	1.6	9
13	PI Parameter Influence on Underfloor Heating Energy Consumption and Setpoint Tracking in nZEBs. Energies, 2020, 13, 2068.	1.6	8
14	Analyzing the fulfillment of daylight and overheating requirements in residential and office buildings in Estonia. Building and Environment, 2020, 180, 107036.	3.0	23
15	A Comparative Study on Cooling Period Thermal Comfort Assessment in Modern Open Office Landscape in Estonia. Atmosphere, 2020, 11, 127.	1.0	4
16	Evidence based residential ventilation: sizing procedure and system solutions addressed by REHVA Residential Ventilation Task Force. E3S Web of Conferences, 2019, 111, 01016.	0.2	0
17	A Simplified Power Sizing Method for the Correct Building Integration of Wood Stoves. E3S Web of Conferences, 2019, 111, 02066.	0.2	2
18	Thermal comfort and draught assessment in a modern open office building in Tallinn. E3S Web of Conferences, 2019, 111, 02013.	0.2	4

MARTIN THALFELDT

#	Article	IF	CITATIONS
19	Optimal PI control parameters for accurate underfloor heating temperature control. E3S Web of Conferences, 2019, 111, 01081.	0.2	1
20	Estimating time constants for underfloor heating control. Journal of Physics: Conference Series, 2019, 1343, 012121.	0.3	2
21	Validation of a Zonal Model to Capture the Detailed Indoor Thermal Environment of a Room Heated by a Stove. Springer Proceedings in Energy, 2019, , 653-663.	0.2	Ο
22	The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies, 2019, 23, 1-13.	0.5	14
23	Exhaust air heat pump connection schemes and balanced heat recovery ventilation effect on district heat energy use and return temperature. Applied Thermal Engineering, 2018, 128, 402-414.	3.0	24
24	Comparison of static and dynamic shading systems for office building energy consumption and cooling load assessment. Management of Environmental Quality, 2018, 29, 978-998.	2.2	17
25	Cost-benefit analysis of nZEB energy efficiency strategies with on-site photovoltaic generation. Energy, 2017, 128, 291-301.	4.5	26
26	Primary energy factor for district heating networks in European Union member states. Energy Procedia, 2017, 116, 69-77.	1.8	28
27	Window model and 5 year price data sensitivity to cost-effective façade solutions for office buildings in Estonia. Energy, 2017, 135, 685-697.	4.5	16
28	Influence of time constants on low energy buildings' heating control. Energy Procedia, 2017, 132, 75-80.	1.8	4
29	Methodological Approach to Determining the Effect of Parallel Energy Consumption on District Heating System. Environmental and Climate Technologies, 2017, 19, 5-14.	0.5	17
30	The Effect of Hydronic Balancing on Room Temperature and Heat Pump Efficiency of a Building with Underfloor Heating. Energy Procedia, 2016, 96, 467-477.	1.8	7
31	Primary Energy Factors for Different District Heating Networks: An Estonian Example. Energy Procedia, 2016, 96, 674-684.	1.8	6
32	Urban planning principles of nearly zero-energy residential buildings in Estonia. Management of Environmental Quality, 2016, 27, 634-648.	2.2	10
33	Horizontal or vertical? Windows' layout selection for shading devices optimization. Management of Environmental Quality, 2016, 27, 623-633.	2.2	19
34	Detailed and simplified window model and opening effects on optimal window size and heating need. Energy and Buildings, 2016, 127, 242-251.	3.1	17
35	Comparison of Simplified and Detailed Window Models in Office Building Energy Simulations. Energy Procedia, 2015, 78, 2076-2081.	1.8	6
36	Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings. Energy, 2015, 84, 623-633.	4.5	29

MARTIN THALFELDT

#	Article	IF	CITATIONS
37	External shading optimal control macros for 1- and 2-piece automated blinds in European climates. Building Simulation, 2015, 8, 13-25.	3.0	7
38	Quantification of economic benefits of renovation of apartment buildings as a basis for cost optimal 2030 energy efficiency strategies. Energy and Buildings, 2015, 86, 151-160.	3.1	53
39	Cost optimal and nearly zero energy building solutions for office buildings. Energy and Buildings, 2014, 74, 30-42.	3.1	140
40	Investigation of heat transfer between neighbouring apartments. , 2014, , .		4
41	Facade design principles for nearly zero energy buildings in a cold climate. Energy and Buildings, 2013, 67, 309-321.	3.1	125
42	Nearly zero energy office building without conventional heating. Estonian Journal of Engineering, 2013, 19, 309.	0.3	8
43	Comparison of Simplified and Detailed Window Models in Energy Simulations. , 0, , .		2