Zhongxin Song

List of Publications by Citations

Source: https://exaly.com/author-pdf/689993/zhongxin-song-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 22,088 300 139 h-index g-index citations papers 15.1 27,419 313 7.53 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
300	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. <i>Nature Communications</i> , 2016 , 7, 13638	17.4	1085
299	High oxygen-reduction activity and durability of nitrogen-doped graphene. <i>Energy and Environmental Science</i> , 2011 , 4, 760	35.4	1073
298	Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. <i>Energy and Environmental Science</i> , 2012 , 5, 5163-5185	35.4	729
297	Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502175	21.8	600
296	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. <i>Scientific Reports</i> , 2013 , 3,	4.9	589
295	Ultrathin MoS2/Nitrogen-Doped Graphene Nanosheets with Highly Reversible Lithium Storage. <i>Advanced Energy Materials</i> , 2013 , 3, 839-844	21.8	417
294	Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. <i>Nature Energy</i> , 2018 , 3, 600-605	62.3	402
293	Metal organic frameworks for energy storage and conversion. <i>Energy Storage Materials</i> , 2016 , 2, 35-62	19.4	386
292	Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. <i>Advanced Functional Materials</i> , 2012 , 22, 1647-1654	15.6	359
291	Olivine LiFePO4: the remaining challenges for future energy storage. <i>Energy and Environmental Science</i> , 2015 , 8, 1110-1138	35.4	323
290	Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. <i>Energy and Environmental Science</i> , 2013 , 6, 2900	35.4	318
289	An Isolated Zinc-Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2622-2626	16.4	292
288	Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. <i>Energy and Environmental Science</i> , 2014 , 7, 768-778	35.4	284
287	Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. <i>Energy and Environmental Science</i> , 2019 , 12, 492-517	35.4	275
286	Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. <i>Energy and Environmental Science</i> , 2019 , 12, 1000-1007	35.4	264
285	Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2673-2695	35.4	257
284	Rational Design of Hierarchical Deramic-in-Polymerland Polymer-in-Ceramiclelectrolytes for Dendrite-Free Solid-State Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1804004	21.8	246

(2018-2017)

283	Ultrafine MoO2-Carbon Microstructures Enable Ultralong-Life Power-Type Sodium Ion Storage by Enhanced Pseudocapacitance. <i>Advanced Energy Materials</i> , 2017 , 7, 1602880	21.8	237
282	From Lithium-Oxygen to Lithium-Air Batteries: Challenges and Opportunities. <i>Advanced Energy Materials</i> , 2016 , 6, 1502164	21.8	237
281	Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. <i>Advanced Materials</i> , 2017 , 29, 1606663	24	221
280	Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10712-10738	13	216
279	Nitrogen Doping Effects on Carbon Nanotubes and the Origin of the Enhanced Electrocatalytic Activity of Supported Pt for Proton-Exchange Membrane Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 3769-3776	3.8	211
278	Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. <i>Advanced Materials</i> , 2015 , 27, 277-81	24	206
277	Structural Design of LithiumBulfur Batteries: From Fundamental Research to Practical Application. <i>Electrochemical Energy Reviews</i> , 2018 , 1, 239-293	29.3	197
276	Promoting the Transformation of Li S to Li S: Significantly Increasing Utilization of Active Materials for High-Sulfur-Loading Li-S Batteries. <i>Advanced Materials</i> , 2019 , 31, e1901220	24	186
275	Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. <i>Nature Communications</i> , 2019 , 10, 4936	17.4	186
274	LiFePO4graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. <i>Energy and Environmental Science</i> , 2013 , 6, 1521	35.4	183
273	Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. <i>Nano Letters</i> , 2017 , 17, 5653-5659	11.5	183
272	Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. <i>Chemical Society Reviews</i> , 2020 , 49, 2140-2195	58.5	175
271	Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective. <i>Advanced Materials</i> , 2016 , 28, 7065-93	24	172
270	Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 2665-2671	35.4	158
269	Single-Atom Catalysts: From Design to Application. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 539-573	29.3	157
268	Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. <i>Energy and Environmental Science</i> , 2020 , 13, 1429-1461	35.4	153
267	Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. <i>Energy and Environmental Science</i> , 2020 , 13, 127-134	35.4	150
266	Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials: An Overview of the Fundamental Origins and Remedying Approaches. <i>Advanced Energy Materials</i> , 2018 , 8, 1802057	21.8	146

265	Radially Oriented Single-Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803963	21.8	143
264	Atomic Fe-Doped MOF-Derived Carbon Polyhedrons with High Active-Center Density and Ultra-High Performance toward PEM Fuel Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1802856	21.8	142
263	Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal DH group?. <i>Energy and Environmental Science</i> , 2020 , 13, 1318-1325	35.4	141
262	Cobalt-Doped SnS2 with Dual Active Centers of Synergistic Absorption-Catalysis Effect for High-S Loading Li-S Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1806724	15.6	139
261	New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO2 onto Ferroelectric-Encapsulated Cathode: Toward Ultrastable Free-Standing Room Temperature SodiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1705537	15.6	134
260	Surface Doping to Enhance Structural Integrity and Performance of Li-Rich Layered Oxide. <i>Advanced Energy Materials</i> , 2018 , 8, 1802105	21.8	134
259	On rechargeability and reaction kinetics of sodiumBir batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 3747-3757	35.4	132
258	Ultrahigh Rate and Long-Life Sodium-Ion Batteries Enabled by Engineered Surface and Near-Surface Reactions. <i>Advanced Materials</i> , 2018 , 30, 1702486	24	130
257	A Novel Organic "Polyurea" Thin Film for Ultralong-Life Lithium-Metal Anodes via Molecular-Layer Deposition. <i>Advanced Materials</i> , 2019 , 31, e1806541	24	129
256	Discharge product morphology and increased charge performance of lithiumBxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20170		127
255	Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7537		126
254	Safe and Durable High-Temperature Lithium-Sulfur Batteries via Molecular Layer Deposited Coating. <i>Nano Letters</i> , 2016 , 16, 3545-9	11.5	126
253	Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 31240-31248	9.5	125
252	A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. <i>Nature Communications</i> , 2018 , 9, 4509	17.4	123
251	Recent Advances in MOF-Derived Single Atom Catalysts for Electrochemical Applications. <i>Advanced Energy Materials</i> , 2020 , 10, 2001561	21.8	122
250	Efficient Trapping and Catalytic Conversion of Polysulfides by VS4 Nanosites for Li B Batteries. <i>ACS Energy Letters</i> , 2019 , 4, 755-762	20.1	122
249	Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells. <i>Advanced Materials</i> , 2017 , 29, 1601741	24	118
248	Potential of metal-free graphene alloylas electrocatalysts for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1795-1810	13	118

247	Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 2258-2265	6.7	118	
246	Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16427-16432	16.4	113	
245	Going Beyond Lithium Hybrid Capacitors: Proposing a New High-Performing Sodium Hybrid Capacitor System for Next-Generation Hybrid Vehicles Made with Bio-Inspired Activated Carbon. <i>Advanced Energy Materials</i> , 2016 , 6, 1502199	21.8	112	
244	A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal. <i>Angewandte Chemie</i> , 2011 , 123, 442-446	3.6	110	
243	g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 5020-5030	13	102	
242	In Situ Li PS Solid-State Electrolyte Protection Layers for Superior Long-Life and High-Rate Lithium-Metal Anodes. <i>Advanced Materials</i> , 2018 , 30, e1804684	24	102	
241	Atomic scale enhancement of metal support interactions between Pt and ZrC for highly stable electrocatalysts. <i>Energy and Environmental Science</i> , 2015 , 8, 1450-1455	35.4	101	
240	Soft X-ray XANES studies of various phases related to LiFePO4 based cathode materials. <i>Energy and Environmental Science</i> , 2012 , 5, 7007	35.4	101	
239	Site-Occupation-Tuned Superionic LiScClHalide Solid Electrolytes for All-Solid-State Batteries. Journal of the American Chemical Society, 2020 , 142, 7012-7022	16.4	97	
238	WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6525		97	
237	Molecular Layer Deposition for Energy Conversion and Storage. ACS Energy Letters, 2018, 3, 899-914	20.1	96	
236	Li2CO3: A Critical Issue for Developing Solid Garnet Batteries. ACS Energy Letters, 2020, 5, 252-262	20.1	96	
235	Graphene Oxide-Template Controlled Cuboid-Shaped High-Capacity VS4 Nanoparticles as Anode for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1801806	15.6	94	
234	Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1900392	15.6	92	
233	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. <i>Nano Energy</i> , 2018 , 48, 35-43	17.1	92	
232	Enhanced Performance of P2-Na0.66(Mn0.54Co0.13Ni0.13)O2 Cathode for Sodium-Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition. <i>Advanced Functional Materials</i> , 2017 , 27, 1701870	15.6	92	
231	Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as High-Performance Cathode. <i>Advanced Materials</i> , 2017 , 29, 1703764	24	91	
230	Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved		88	

229	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. <i>ACS Energy Letters</i> , 2019 , 4, 2480-2488	20.1	85
228	Surface aging at olivine LiFePO4: a direct visual observation of iron dissolution and the protection role of nano-carbon coating. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1579-1586	13	84
227	Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells. <i>Catalysts</i> , 2016 , 6, 116	4	84
226	Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8408-8415	13	82
225	Tuning the Anode-Electrolyte Interface Chemistry for Garnet-Based Solid-State Li Metal Batteries. <i>Advanced Materials</i> , 2020 , 32, e2000030	24	81
224	A Versatile Sn-Substituted Argyrodite Sulfide Electrolyte for All-Solid-State Li Metal Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903422	21.8	81
223	Tunable porous structure of metal organic framework derived carbon and the application in lithiumBulfur batteries. <i>Journal of Power Sources</i> , 2016 , 302, 174-179	8.9	81
222	Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13)O2 cathode modified by atomic layer deposition for sodium-ion batteries. <i>ChemSusChem</i> , 2015 , 8, 2537-43	8.3	80
221	Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 42796-42803	9.5	80
220	Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. <i>Nano Energy</i> , 2018 , 54, 375-382	17.1	80
219	Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts. <i>Materials Horizons</i> , 2017 , 4, 900-907	14.4	79
218	High-Performance Li-SeS All-Solid-State Lithium Batteries. <i>Advanced Materials</i> , 2019 , 31, e1808100	24	79
217	Three-Dimensional Nanostructured Air Electrode for Sodium Dxygen Batteries: A Mechanism Study toward the Cyclability of the Cell. <i>Chemistry of Materials</i> , 2015 , 27, 3040-3047	9.6	79
216	Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. <i>RSC Advances</i> , 2016 , 6, 19233-19237	3.7	78
215	An Isolated Zinctobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 2648-2652	3.6	78
214	Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors. <i>ChemSusChem</i> , 2017 , 10, 2805-2815	8.3	75
213	High Capacity, Dendrite-Free Growth, and Minimum Volume Change Na Metal Anode. <i>Small</i> , 2018 , 14, e1703717	11	75
212	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 1035-1043	20.1	73

211	Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 881-890	3.8	73
210	A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 407-414	21.8	73
209	An Air-Stable and Dendrite-Free Li Anode for Highly Stable All-Solid-State Sulfide-Based Li Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1902125	21.8	72
208	Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. <i>Energy and Environmental Science</i> , 2021 , 14, 643-671	35.4	71
207	Non-Aqueous Approach to Synthesize Amorphous/Crystalline Metal Oxide-Graphene Nanosheet Hybrid Composites. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 18330-18337	3.8	70
206	Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. <i>ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Approach. ACS Applied Materials & Description of the Printing Applied Action of the Printing Action of</i>	9.5	70
205	High-performance all-solid-state LiBe batteries induced by sulfide electrolytes. <i>Energy and Environmental Science</i> , 2018 , 11, 2828-2832	35.4	69
204	Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. <i>Small</i> , 2019 , 15, e1904740	11	69
203	Interface Design and Development of Coating Materials in LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1801323	15.6	69
202	Ultrasmall MoS2 embedded in carbon nanosheets-coated Sn/SnOx as anode material for high-rate and long life Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4576-4582	13	68
201	Superior sodium storage of novel VO2 nano-microspheres encapsulated into crumpled reduced graphene oxide. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4850-4860	13	67
200	Robust Metallic Lithium Anode Protection by the Molecular-Layer-Deposition Technique. <i>Small Methods</i> , 2018 , 2, 1700417	12.8	65
199	Tailoring interactions of carbon and sulfur in LiB battery cathodes: significant effects of carbonBeteroatom bonds. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12866	13	65
198	Detection of Electrochemical Reaction Products from the Sodium-Oxygen Cell with Solid-State Na NMR Spectroscopy. <i>Journal of the American Chemical Society</i> , 2017 , 139, 595-598	16.4	64
197	Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Next-Generation Battery Systems. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1579	7-16 8 0	2 ⁶⁴
196	Automated Four-Point Probe Measurement of Nanowires Inside a Scanning Electron Microscope. <i>IEEE Nanotechnology Magazine</i> , 2011 , 10, 674-681	2.6	64
195	Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2306	13	63
194	Atomic Layer Deposition of Lithium Niobium Oxides as Potential Solid-State Electrolytes for Lithium-lon Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2018 , 10, 1654-1661	9.5	63

193	Pt/Pd Single-Atom Alloys as Highly Active Electrochemical Catalysts and the Origin of Enhanced Activity. <i>ACS Catalysis</i> , 2019 , 9, 9350-9358	13.1	61
192	Electrocatalysts by atomic layer deposition for fuel cell applications. <i>Nano Energy</i> , 2016 , 29, 220-242	17.1	61
191	Manipulating Interfacial Nanostructure to Achieve High-Performance All-Solid-State Lithium-Ion Batteries. <i>Small Methods</i> , 2019 , 3, 1900261	12.8	60
190	Insight into MoS2MoN Heterostructure to Accelerate Polysulfide Conversion toward High-Energy-Density LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003314	21.8	60
189	Toward a SodiumAirBattery: Revealing the Critical Role of Humidity. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 13433-13441	3.8	58
188	Fe2O3@CNTs Anode Materials for Lithium Ion Batteries Investigated by Electron Energy Loss Spectroscopy. <i>Chemistry of Materials</i> , 2017 , 29, 3499-3506	9.6	53
187	Stabilization of all-solid-state LiB batteries with a polymerDeramic sandwich electrolyte by atomic layer deposition. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23712-23719	13	51
186	Li10Ge(P1\square	9.6	50
185	Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 4954-4961	9.5	50
184	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. <i>Energy and Environmental Science</i> , 2021 , 14, 2577-2619	35.4	49
183	A bifunctional solid state catalyst with enhanced cycling stability for Na and LiD2 cells: revealing the role of solid state catalysts. <i>Energy and Environmental Science</i> , 2017 , 10, 286-295	35.4	47
182	Active and Stable PtNi Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. <i>ACS Catalysis</i> , 2020 , 10, 4205-4214	13.1	47
181	Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes. <i>RSC Advances</i> , 2013 , 3, 7285	3.7	47
180	A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. <i>Nature Communications</i> , 2021 , 12, 176	17.4	47
179	Interaction of Carbon Coating on LiFePO4: A Local Visualization Study of the Influence of Impurity Phases. <i>Advanced Functional Materials</i> , 2013 , 23, 806-814	15.6	46
178	Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119809	21.8	45
177	Single-atom catalysts by the atomic layer deposition technique. <i>National Science Review</i> , 2018 , 5, 628-63	3 0 0.8	45
176	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm2/20 mAh cm2 Realized by Selective Nucleation within Microchannel Walls. <i>Advanced Energy Materials</i> 2020, 10, 1903753	21.8	44

(2020-2018)

175	Synchrotron-Based X-ray Absorption Fine Structures, X-ray Diffraction, and X-ray Microscopy Techniques Applied in the Study of Lithium Secondary Batteries. <i>Small Methods</i> , 2018 , 2, 1700341	12.8	44
174	Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12321		44
173	Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 31786-31793	9.5	43
172	Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state LiB batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10412-10421	13	42
171	Dynamics of the Garnet/Li Interface for Dendrite-Free Solid-State Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 2156-2164	20.1	41
170	Recent Advances on Sodium-Oxygen Batteries: A Chemical Perspective. <i>Accounts of Chemical Research</i> , 2018 , 51, 1532-1540	24.3	41
169	Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. <i>Angewandte Chemie</i> , 2019 , 131, 165	7 9 .65	84 0
168	All-Organic Sodium Hybrid Capacitor: A New, High-Energy, High-Power Energy Storage System Bridging Batteries and Capacitors. <i>Chemistry of Materials</i> , 2017 , 29, 7122-7130	9.6	40
167	Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. <i>Nature Communications</i> , 2020 , 11, 5700	17.4	40
166	Observation of lithiation-induced structural variations in TiO2 nanotube arrays by X-ray absorption fine structure. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 412-419	13	39
165	Composite Nanostructure Construction on the Grain Surface of Li-Rich Layered Oxides. <i>Advanced Materials</i> , 2020 , 32, e1906070	24	38
164	Eliminating the Detrimental Effects of Conductive Agents in Sulfide-Based Solid-State Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 1243-1251	20.1	38
163	Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2769-2776	13	38
162	Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: effects of surface functionalization and nitrogen-doping. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 1207-1218	2.3	37
161	Interfaces in Garnet-Based All-Solid-State Lithium Batteries. Advanced Energy Materials, 2020, 10, 2001.	318 .8	37
160	Utilizing the full capacity of carbon black as anode for Na-ion batteries via solvent co-intercalation. <i>Nano Research</i> , 2017 , 10, 4378-4387	10	36
159	3D boron doped carbon nanorods/carbon-microfiber hybrid composites: synthesis and applications in a highly stable proton exchange membrane fuel cell. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18195		36
158	Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. <i>Small</i> , 2020 , 16, e2003096	11	36

157	Ultrahigh-Capacity and Long-Life Lithium-Metal Batteries Enabled by Engineering Carbon Nanofiber-Stabilized Graphene Aerogel Film Host. <i>Small</i> , 2018 , 14, e1803310	11	36
156	An Air-Stable and Li-Metal-Compatible Glass-Ceramic Electrolyte enabling High-Performance All-Solid-State Li Metal Batteries. <i>Advanced Materials</i> , 2021 , 33, e2006577	24	36
155	Highly Exposed Active Sites of Defect-Enriched Derived MOFs for Enhanced Oxygen Reduction Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17855-17862	8.3	35
154	Origin of Superionic LiYInCl Halide Solid Electrolytes with High Humidity Tolerance. <i>Nano Letters</i> , 2020 , 20, 4384-4392	11.5	35
153	Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. <i>Nano Research</i> , 2021 , 14, 868-878	10	35
152	Insight into the Microstructure and Ionic Conductivity of Cold Sintered NASICON Solid Electrolyte for Solid-State Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 27890-27896	9.5	34
151	Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9760-9767	13	33
150	High Tap Density Co and Ni Containing P2-Na0.66MnO2 Buckyballs: A Promising High Voltage Cathode for Stable Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1801898	15.6	33
149	The application of carbon materials in nonaqueous Na-O2 batteries 2019 , 1, 141-164		33
148	Nanoscale stabilization of LiBulfur batteries by atomic layer deposited Al2O3. <i>RSC Advances</i> , 2014 , 4, 27126	3.7	33
147	Full Concentration Gradient-Tailored Li-Rich Layered Oxides for High-Energy Lithium-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2001358	24	33
146	Size-Mediated Recurring Spinel Sub-nanodomains in Li- and Mn-Rich Layered Cathode Materials. Angewandte Chemie - International Edition, 2020, 59, 14313-14320	16.4	32
145	Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer. <i>Carbon</i> , 2016 , 99, 249-260	10.4	32
144	Metal Halide Superionic Conductors for All-Solid-State Batteries. <i>Accounts of Chemical Research</i> , 2021 , 54, 1023-1033	24.3	31
143	Atomic Layer Deposited Non-Noble Metal Oxide Catalyst for Sodium Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. <i>Advanced Functional Materials</i> , 2017 , 27, 160666	5 2 15.6	30
142	Anhydride Post-Synthetic Modification in a Hierarchical Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4419-4428	16.4	30
141	How to Control the Discharge Products in Na-O Cells: Direct Evidence toward the Role of Functional Groups at the Air Electrode Surface. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4794-4800	o ^{6.4}	30
140	Carbon coated bimetallic sulfide nanodots/carbon nanorod heterostructure enabling long-life lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 25625-25631	13	30

139	High-Performance and Recyclable Al-Air Coin Cells Based on Eco-friendly Chitosan Hydrogel Membranes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 19730-19738	9.5	30
138	In situ formation of highly controllable and stable Na3PS4 as a protective layer for Na metal anode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4119-4125	13	29
137	Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24281-24288	13	29
136	Anisotropically Electrochemical-Mechanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18647-18653	16.4	29
135	Thermal and chemical durability of nitrogen-doped carbon nanotubes. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	29
134	Revealing the charge/discharge mechanism of NaD2 cells by in situ soft X-ray absorption spectroscopy. <i>Energy and Environmental Science</i> , 2018 , 11, 2073-2077	35.4	29
133	On the Cycling Performance of Na-O2 Cells: Revealing the Impact of the Superoxide Crossover toward the Metallic Na Electrode. <i>Advanced Functional Materials</i> , 2018 , 28, 1801904	15.6	28
132	Temperature-Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotron-Based Imaging Techniques. <i>Advanced Materials</i> , 2020 , 32, e2002550	24	27
131	Unraveling the Origin of Moisture Stability of Halide Solid-State Electrolytes by In Situ and Operando Synchrotron X-ray Analytical Techniques. <i>Chemistry of Materials</i> , 2020 , 32, 7019-7027	9.6	27
130	Implanting CNT Forest onto Carbon Nanosheets as Multifunctional Hosts for High-Performance Lithium Metal Batteries. <i>Small Methods</i> , 2019 , 3, 1800546	12.8	27
129	Encapsulating Pt Nanoparticles inside a Derived Two-Dimensional Metal-Organic Frameworks for the Enhancement of Catalytic Activity. <i>ACS Applied Materials & Derived M</i>	9.5	26
128	Highly interconnected hollow graphene nanospheres as an advanced high energy and high power cathode for sodium metal batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9846-9853	13	26
127	Atomic layer deposited aluminium phosphate thin films on N-doped CNTs. RSC Advances, 2013, 3, 4492	3.7	26
126	Three-dimensional Composite Catalysts for Al-O Batteries Composed of CoMnO Nanoneedles Supported on Nitrogen-Doped Carbon Nanotubes/Graphene. <i>ACS Applied Materials & Composition Composition Composition (Composition Composition Compos</i>	9.5	25
125	Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11117-11126	13	25
124	Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solid-State Na Metal Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001118	15.6	25
123	Multi-functional nanowall arrays with unrestricted Li+ transport channels and an integrated conductive network for high-areal-capacity LiB batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2295	8 -2 296	5 3 5
122	A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. <i>Science Advances</i> , 2021 , 7, eabh1896	14.3	25

121	Highly Stable and Active Pt/Nb-TiO2Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells. <i>Journal of Nanotechnology</i> , 2012 , 2012, 1-8	3.5	24
120	Titanium Dioxide/Lithium Phosphate Nanocomposite Derived from Atomic Layer Deposition as a High-Performance Anode for Lithium Ion Batteries. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600369	4.6	24
119	Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. <i>Small</i> , 2021 , 17, e2007245	11	24
118	Interrogation of the Reaction Mechanism in a Na-O Battery Using Transmission Electron Microscopy. <i>ACS Nano</i> , 2020 , 14, 3669-3677	16.7	22
117	A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state LiBe batteries. Journal of Materials Chemistry A, 2020 , 8, 278-286	13	22
116	Phase-Separated Mo N i Alloy for Hydrogen Oxidation and Evolution Reactions with High Activity and Enhanced Stability. <i>Advanced Energy Materials</i> , 2021 , 11, 2003511	21.8	22
115	Transition of the Reaction from Three-Phase to Two-Phase by Using a Hybrid Conductor for High-Energy-Density High-Rate Solid-State Li-O Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5821-5826	16.4	22
114	Selective atomic layer deposition of RuOx catalysts on shape-controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24397-244	ાર્વહે	22
113	Ultralow Loading and High-Performing Pt Catalyst for a Polymer Electrolyte Membrane Fuel Cell Anode Achieved by Atomic Layer Deposition. <i>ACS Catalysis</i> , 2019 , 9, 5365-5374	13.1	21
112	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for High-Performance Metallic Lithium Anode. <i>Advanced Energy Materials</i> , 2020 , 10, 2001139	21.8	21
111	Visualizing the Oxidation Mechanism and Morphological Evolution of the Cubic-Shaped Superoxide Discharge Product in NaAir Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1808332	15.6	20
110	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfide-Based All-Solid-State Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100210	21.8	20
109	Improving dispersion and integration of single-walled carbon nanotubes in epoxy composites by using a reactive noncovalent dispersant. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 4548-4556	2.5	19
108	A facile route to synthesize titanium oxide nanowires via water-assisted chemical vapor deposition. Journal of Nanoparticle Research, 2011 , 13, 385-391	2.3	19
107	Combustion combined with ball milling to produce nanoscale La2O3 coated on LiMn2O4 for optimized Li-ion storage performance at high temperature. <i>Journal of Applied Electrochemistry</i> , 2018 , 48, 135-145	2.6	19
106	Revealing the Chemical Mechanism of NaO2 Decomposition by In Situ Raman Imaging. <i>Chemistry of Materials</i> , 2018 , 30, 5156-5160	9.6	19
105	Multilayer graphene synthesized using magnetron sputtering for planar supercapacitor application. <i>Canadian Journal of Chemistry</i> , 2015 , 93, 160-164	0.9	18
104	Aligning the binder effect on sodium Bir batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1473-1484	13	18

103	Antiperovskite Electrolytes for Solid-State Batteries Chemical Reviews, 2022,	68.1	18
102	A general strategy for preparing pyrrolic-N type single-atom catalysts via pre-located isolated atoms. <i>Nature Communications</i> , 2021 , 12, 6806	17.4	18
101	Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. <i>Nano Research</i> , 2020 , 14, 2353	10	18
100	Carbon-Decorated NaV(PO) as Ultralong Lifespan Cathodes for High-Energy-Density Symmetric Sodium-Ion Batteries. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 25036-25043	9.5	18
99	Novel High-Energy-Density Rechargeable Hybrid Sodium-Air Cell with Acidic Electrolyte. <i>ACS Applied Materials & Applied & Appl</i>	9.5	17
98	Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries. <i>ACS Applied Materials & District Action Services</i> , 2019, 11, 32826-328	332	17
97	Advanced High-Voltage All-Solid-State Li-Ion Batteries Enabled by a Dual-Halogen Solid Electrolyte. <i>Advanced Energy Materials</i> , 2021 , 11, 2100836	21.8	17
96	Atomic Layer Deposition of Hierarchical CNTs@FePO4 Architecture as a 3D Electrode for Lithium-Ion and Sodium-Ion Batteries. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600468	4.6	16
95	Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	16
94	Unveiling the Interfacial Instability of the Phosphorus/Carbon Anode for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 30763-30773	9.5	16
93	Aqueous dispersion of pristine single-walled carbon nanotubes prepared by using a vinylimidazole-based polymer dispersant. <i>RSC Advances</i> , 2014 , 4, 2327-2338	3.7	16
92	Recent advances and strategies in the stabilization of single-atom catalysts for electrochemical applications 2020 , 2, 488-520		16
91	Understanding the Critical Role of Binders in Phosphorus/Carbon Anode for Sodium-Ion Batteries through Unexpected Mechanism. <i>Advanced Functional Materials</i> , 2020 , 30, 2000060	15.6	15
90	Design of a 3D-Porous Structure with Residual Carbon for High-Performance Ni-Rich Cathode Materials. <i>ACS Applied Materials & Materials</i> (2019, 11, 2500-2506)	9.5	15
89	Regulated lithium plating and stripping by a nano-scale gradient inorganicBrganic coating for stable lithium metal anodes. <i>Energy and Environmental Science</i> , 2021 , 14, 4085-4094	35.4	15
88	Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5468-5474	13	15
87	New Insight of Pyrrole-Like Nitrogen for Boosting Hydrogen Evolution Activity and Stability of Pt Single Atoms. <i>Small</i> , 2021 , 17, e2004453	11	15
86	Solvent-Free Approach for Interweaving Freestanding and Ultrathin Inorganic Solid Electrolyte Membranes. <i>ACS Energy Letters</i> , 2022 , 7, 410-416	20.1	15

85	Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24830-24836	13	14
84	Highly Dispersed Nonprecious Metal Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 17481-17491	9.5	14
83	O2/O2lCrossover- and Dendrite-Free Hybrid Solid-State NaD2 Batteries. <i>Chemistry of Materials</i> , 2019 , 31, 9024-9031	9.6	14
82	A study on the bactericidal properties of Cu-coated carbon nanotubes. <i>Frontiers of Materials Science in China</i> , 2007 , 1, 147-150		14
81	3D Porous Garnet/Gel Polymer Hybrid Electrolyte for Safe Solid-State LiD2 Batteries with Long Lifetimes. <i>Chemistry of Materials</i> , 2020 , 32, 10113-10119	9.6	14
80	New Insights into the High-Performance Black Phosphorus Anode for Lithium-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2101259	24	14
79	Ultralong-Life Quasi-Solid-State Li-O2 Batteries Enabled by Coupling Advanced Air Electrode Design with Li Metal Anode Protection. <i>Small Methods</i> , 2018 , 3, 1800437	12.8	14
78	Controllable Synthesis of Co@CoO/Helical Nitrogen-Doped Carbon Nanotubes toward Oxygen Reduction Reaction as Binder-free Cathodes for Al-Air Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 16512-16520	9.5	13
77	High-performance alcohol electrooxidation on Pt3SnBnO2 nanocatalysts synthesized through the transformation of PtBn nanoparticles. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 592-598	13	13
76	Enhancing metal upport interaction by in situ ion-exchanging strategy for high performance Pt catalysts in hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16582-16589	13	13
75	Fast Charging All Solid-State Lithium Batteries Enabled by Rational Design of Dual Vertically-Aligned Electrodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2005357	15.6	13
74	Stable Silicon Anodes by Molecular Layer Deposited Artificial Zincone Coatings. <i>Advanced Functional Materials</i> , 2021 , 31, 2010526	15.6	13
73	Engineering a BanonetEreinforced polymer electrolyte for long-life LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24947-24952	13	13
72	Batteries: Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage (Adv. Funct. Mater. 8/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 1646-1646	15.6	12
71	Insights into the electronic origin of enhancing the catalytic activity of Co3O4 for oxygen evolution by single atom ruthenium. <i>Nano Today</i> , 2020 , 34, 100955	17.9	12
70	Recent Development of Electrocatalytic CO Reduction Application to Energy Conversion. <i>Small</i> , 2021 , 17, e2100323	11	12
69	Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers. <i>ACS Applied Materials & District Sciences</i> , 2021 , 13, 4093-4101	9.5	12
68	Bifunctional Pt\$\textsum 0304 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 63	1 6- 632	4 ¹²

67	Designing High-Performance Nanostructured P2-type Cathode Based on a Template-free Modified Pechini Method for Sodium-Ion Batteries. <i>ACS Omega</i> , 2018 , 3, 8309-8316	3.9	11
66	ALD derived Fe3+- doping toward high performance P2Na0.75Ni0.2Co0.2Mn0.6O2 cathode material for sodium ion batteries. <i>Materials Today Energy</i> , 2019 , 14, 100353	7	11
65	Structure and Charge Regulation Strategy Enabling Superior Cyclability for Ni-Rich Layered Cathode Materials. <i>Small</i> , 2021 , 17, e2104282	11	11
64	Nanomechanical elasticity and fracture studies of lithium phosphate (LPO) and lithium tantalate (LTO) solid-state electrolytes. <i>Nanoscale</i> , 2019 , 11, 18730-18738	7.7	11
63	Sodium Superionic Conductors (NASICONs) as Cathode Materials for Sodium-Ion Batteries. <i>Electrochemical Energy Reviews</i> ,1	29.3	11
62	Non Noble Metal Catalyst for Oxygen Reduction Reaction and Its Characterization by Simulated Fuel Cell Test. <i>Journal of the Electrochemical Society</i> , 2018 , 165, J3008-J3015	3.9	10
61	Enhancement of PEMFC performance by using carbon nanotubes supported Pt?Co alloy catalysts. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2009 , 4, 12-16	1.3	10
60	Phase Evolution of a Prenucleator for Fast Li Nucleation in All-Solid-State Lithium Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2001191	21.8	10
59	Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Li-Metal in All-Solid-State Li Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101915	21.8	10
58	Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Next-Generation Battery Systems. <i>Angewandte Chemie</i> , 2019 , 131, 15944-15949	3.6	9
57	Highly Active and Durable Ultrasmall Pd Nanocatalyst Encapsulated in Ultrathin Silica Layers by Selective Deposition for Formic Acid Oxidation. <i>ACS Applied Materials & Description of Selective Deposition for Formic Acid Oxidation</i> . <i>ACS Applied Materials & Description of Selective Deposition for Formic Acid Oxidation</i> .	0-43713	7 ⁹
56	A facile approach to synthesize poly(4-vinylpyridine)/multi-walled carbon nanotubes nanocomposites: highly water-dispersible carbon nanotubes decorated with gold nanoparticles. <i>Colloid and Polymer Science</i> , 2011 , 289, 783-789	2.4	9
55	Origin of High Ionic Conductivity of Sc-Doped Sodium-Rich NASICON Solid-State Electrolytes. <i>Advanced Functional Materials</i> , 2021 , 31, 2102129	15.6	9
54	Realizing Solid-Phase Reaction in Liß Batteries via Localized High-Concentration Carbonate Electrolyte. <i>Advanced Energy Materials</i> , 2021 , 11, 2101004	21.8	9
53	Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by Scanning Transmission X-ray Microscopy. <i>Chemistry of Materials</i> , 2020 , 32, 1272-1280	9.6	8
52	Understanding the Influence of Crystallographic Structure on Controlling the Shape of Noble Metal Nanostructures. <i>Crystal Growth and Design</i> , 2011 , 11, 5457-5460	3.5	8
51	One-step in situ synthesis and characterization of W18O49@carbon coaxial nanocables. <i>Journal of Materials Research</i> , 2009 , 24, 1833-1841	2.5	8
50	Advanced Support Materials and Interactions for Atomically Dispersed Noble-Metal Catalysts: From Support Effects to Design Strategies. <i>Advanced Energy Materials</i> , 2022 , 12, 2102556	21.8	8

49	All-Solid-State Lithium Metal Batteries with Sulfide Electrolytes: Understanding Interfacial Ion and Electron Transport. <i>Accounts of Materials Research</i> ,	7.5	8
48	Engineering Surface Oxygenated Functionalities on Commercial Carbon toward Ultrafast Sodium Storage in Ether-Based Electrolytes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 37116-37127	9.5	8
47	High-Performance Ammonium Cobalt Phosphate Nanosheet Electrocatalyst for Alkaline Saline Water Oxidation. <i>Advanced Science</i> , 2021 , 8, 2100498	13.6	8
46	Transition of the Reaction from Three-Phase to Two-Phase by Using a Hybrid Conductor for High-Energy-Density High-Rate Solid-State Li-O2 Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 5885-5890	3.6	8
45	Lithium-Ion Batteries: Radially Oriented Single-Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries (Adv. Energy Mater. 15/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970051	21.8	7
44	Totally atom-economical synthesis of nano/micro structured nickel hydroxide realized by an NiD2 fuel cell. <i>Green Chemistry</i> , 2015 , 17, 1446-1452	10	7
43	Size-Mediated Recurring Spinel Sub-nanodomains in Li- and Mn-Rich Layered Cathode Materials. <i>Angewandte Chemie</i> , 2020 , 132, 14419-14426	3.6	7
42	Morphology- and lattice stability-dependent performance of nanostructured Li4Ti5O12 probed by in situ high-pressure Raman spectroscopy and synchrotron X-ray diffraction. <i>CrystEngComm</i> , 2016 , 18, 736-743	3.3	7
41	A Simple and Facile Approach to Synthesize Water-Soluble Multiwalled Carbon Nanotubes Wrapped by Poly(4-Vinylpyridine). <i>Journal of Macromolecular Science - Physics</i> , 2011 , 50, 679-687	1.4	7
40	Influence of modulation ratio on structure and properties of nanoscale ZrB2/ZrAlN multilayered coatings. <i>Science China Technological Sciences</i> , 2010 , 53, 772-775	3.5	7
39	Electron and Ion Co-Conductive Catalyst Achieving Instant Transformation of Lithium Polysulfide towards Li S. <i>Advanced Materials</i> , 2021 , e2105362	24	7
38	Variable-Energy Hard X-ray Photoemission Spectroscopy: A Nondestructive Tool to Analyze the Cathode-Solid-State Electrolyte Interface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 2293-2298	9.5	7
37	Highly stable halide electrolyte-based all-solid-state Li-Se batteries Advanced Materials, 2022, e220085	5 6 4	7
36	Phosphorene Nanosheets Exfoliated from Low-Cost and High-Quality Black Phosphorus for Hydrogen Evolution. <i>ACS Applied Nano Materials</i> , 2020 , 3, 7508-7515	5.6	6
35	Pt/TiSi -NCNT Novel Janus Nanostructure: A New Type of High-Performance Electrocatalyst. <i>ACS Applied Materials & District Materials & </i>	9.5	6
34	Reviving Anode Protection Layer in Na-O2 Batteries: Failure Mechanism and Resolving Strategy. <i>Advanced Energy Materials</i> , 2021 , 11, 2003789	21.8	6
33	Fast-Charging Halide-Based All-Solid-State Batteries by Manipulation of Current Collector Interface. <i>Advanced Functional Materials</i> ,2200767	15.6	6
32	Lithium-Ion Batteries: Rational Design of Atomic-Layer-Deposited LiFePO4 as a High-Performance Cathode for Lithium-Ion Batteries (Adv. Mater. 37/2014). <i>Advanced Materials</i> , 2014 , 26, 6358-6358	24	5

31	Band Engineering Induced Conducting 2H-Phase MoS 2 by Pd?S?Re Sites Modification for Hydrogen Evolution Reaction. <i>Advanced Energy Materials</i> ,2103823	21.8	5	
30	Insight into Ion Diffusion Dynamics/Mechanisms and Electronic Structure of Highly Conductive Sodium-Rich NaLaZrSiPO (0 IID.5) Solid-State Electrolytes. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2021 , 13, 13132-13138	9.5	5	
29	High-Performance Quasi-Solid-State Na-Air Battery via Gel Cathode by Confining Moisture. <i>Advanced Functional Materials</i> , 2021 , 31, 2011151	15.6	5	
28	Thermal Stability of Alumina-Overcoated Au25 Clusters for Catalysis. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6904-6911	5.6	5	
27	Realizing High-Performance Li-S Batteries through Additive Manufactured and Chemically Enhanced Cathodes <i>Small Methods</i> , 2021 , 5, e2100176	12.8	5	
26	A Series of Ternary Metal Chloride Superionic Conductors for High-Performance All-Solid-State Lithium Batteries. <i>Advanced Energy Materials</i> ,2103921	21.8	5	
25	Investigation of the Lithiation Mechanism of Fe3O4-Based Composite Anode: the Effect of the Carbon Matrix. <i>ChemistrySelect</i> , 2016 , 1, 3979-3991	1.8	4	
24	Anisotropically Electrochemical Mechanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. <i>Angewandte Chemie</i> , 2019 , 131, 18820-18826	3.6	4	
23	Emerging Characterization Techniques for Electrode Interfaces in Sulfide-Based All-Solid-State Lithium Batteries. <i>Small Structures</i> ,2100146	8.7	4	
22	Revealing Dopant Local Structure of Se-Doped Black Phosphorus. <i>Chemistry of Materials</i> , 2021 , 33, 20	29 3.6 36	4	
21	CoreBhell Structured Cu(OH)2@NiFe(OH)x Nanotube Electrocatalysts for Methanol Oxidation Based Hydrogen Evolution. <i>ACS Applied Nano Materials</i> , 2021 , 4, 8723-8732	5.6	4	
20	Self-assembly synthesis and mechanism investigation of branched corellhell hybrids of tin nanowires and carbon nanotubes. <i>Journal of Materials Research</i> , 2013 , 28, 969-975	2.5	3	
19	Hierarchical Hybrid of Few-Layer Graphene upon Tungsten Monocarbide Nanowires: Controlled Synthesis and Electrocatalytic Performance for Methanol Oxidation. <i>ACS Applied Energy Materials</i> , 2019 , 2, 328-337	6.1	2	
18	Sodium-Ion Batteries: Ultrafine MoO2-Carbon Microstructures Enable Ultralong-Life Power-Type Sodium Ion Storage by Enhanced Pseudocapacitance (Adv. Energy Mater. 15/2017). <i>Advanced Energy Materials</i> , 2017 , 7,	21.8	2	
17	Facile Synthesis of Crystalline SnO2 Nanowires on Various Current Collector Substrates. <i>Journal of the Chinese Chemical Society</i> , 2012 , 59, 1288-1293	1.5	2	
16	Titelbild: A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal (Angew. Chem. 2/2011). <i>Angewandte Chemie</i> , 2011 , 123, 341-341	3.6	2	
15	Stabilizing LiNi Co Mn O Cathode by Doping Sulfate for Lithium-Ion Batteries. <i>ChemSusChem</i> , 2021 , 14, 2721-2730	8.3	2	
14	Capacitors: Going Beyond Lithium Hybrid Capacitors: Proposing a New High-Performing Sodium Hybrid Capacitor System for Next-Generation Hybrid Vehicles Made with Bio-Inspired Activated Carbon (Adv. Energy Mater, 7/2016). Advanced Energy Materials, 2016, 6	21.8	2	

13	Characterization of Supported Metal Single-Atom Catalysts 2022 , 169-198		2
12	Visualization of the secondary phase in LiFePO4 ingots with advanced mapping techniques. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 2218-2223	2.3	1
11	Antipoisoning Performance of Platinum Catalysts with Varying Carbon Nanotube Properties: Electrochemically Revealing the Importance of Defects. <i>ChemElectroChem</i> , 2017 , 4, 296-303	4.3	1
10	Doped Graphene as Electrocatalysts for Oxygen Reduction Reaction 2015 , 17-42		1
9	Cover Picture: A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal (Angew. Chem. Int. Ed. 2/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 325-325	16.4	1
8	A MEMS tensile testing device for mechanical characterization of individual nanowires 2010,		1
7	Rational design of Ru species on N-doped graphene promoting water dissociation for boosting hydrogen evolution reaction. <i>Science China Chemistry</i> , 2022 , 65, 521	7.9	1
6	Probing heat generation and release in a 57.5 A h high-energy-density Li-ion pouch cell with a nickel-rich cathode and SiOx/graphite anode. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1227-1235	13	1
5	Fracture and Fatigue of AlO-Graphene Nanolayers. <i>Nano Letters</i> , 2021 , 21, 437-444	11.5	1
4	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction		1
3	REktitelbild: Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte (Angew. Chem. 46/2019). <i>Angewandte Chemie</i> , 2019 , 131, 16852-16852	3.6	
2	Advanced Carbon Materials for Electrochemical Energy Conversion and Storage. <i>World Scientific Series on Carbon Nanoscience</i> , 2012 , 55-94	0.5	
1	A Series of Ternary Metal Chloride Superionic Conductors for High-Performance All-Solid-State Lithium Batteries (Adv. Energy Mater. 21/2022). <i>Advanced Energy Materials</i> , 2022 , 12, 2270085	21.8	