José M Ayuso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6899911/publications.pdf

Version: 2024-02-01

34	1,110	19	32
papers	citations	h-index	g-index
35	35	35	1148
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. Oncolmmunology, 2019, 8, 1553477.	4.6	103
2	Development and characterization of a microfluidic model of the tumour microenvironment. Scientific Reports, 2016, 6, 36086.	3.3	95
3	Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion. Science Advances, $2021, 7, .$	10.3	82
4	Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptations. EBioMedicine, 2018, 37, 144-157.	6.1	68
5	Tumor-on-a-chip: a microfluidic model to study cell response to environmental gradients. Lab on A Chip, 2019, 19, 3461-3471.	6.0	65
6	A role for microfluidic systems in precision medicine. Nature Communications, 2022, 13, .	12.8	63
7	Breast Fibroblasts and ECM Components Modulate Breast Cancer Cell Migration through the Secretion of MMPs in a 3D Microfluidic Co-Culture Model. Cancers, 2020, 12, 1173.	3.7	56
8	Microfluidic lumen-based systems for advancing tubular organ modeling. Chemical Society Reviews, 2020, 49, 6402-6442.	38.1	54
9	Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing aggressiveness through blood vessel obstruction events. Neuro-Oncology, 2017, 19, now230.	1.2	51
10	Human Tumor‣ymphatic Microfluidic Model Reveals Differential Conditioning of Lymphatic Vessels by Breast Cancer Cells. Advanced Healthcare Materials, 2020, 9, e1900925.	7.6	45
11	Matrix density drives 3D organotypic lymphatic vessel activation in a microfluidic model of the breast tumor microenvironment. Lab on A Chip, 2020, 20, 1586-1600.	6.0	40
12	Tau Protein Provides DNA with Thermodynamic and Structural Features which are Similar to those Found in Histone-DNA Complex. Journal of Alzheimer's Disease, 2014, 39, 649-660.	2.6	34
13	Enabling cell recovery from 3D cell culture microfluidic devices for tumour microenvironment biomarker profiling. Scientific Reports, 2019, 9, 6199.	3.3	33
14	Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells. Scientific Reports, 2019, 9, 12480.	3.3	30
15	Toward improved <i>in vitro</i> models of human cancer. APL Bioengineering, 2021, 5, 010902.	6.2	30
16	Study of the Chemotactic Response of Multicellular Spheroids in a Microfluidic Device. PLoS ONE, 2015, 10, e0139515.	2.5	29
17	Elucidating cancer-vascular paracrine signaling using a human organotypic breast cancer cell extravasation model. Biomaterials, 2021, 270, 120640.	11.4	25
18	Microfluidic model with air-walls reveals fibroblasts and keratinocytes modulate melanoma cell phenotype, migration, and metabolism. Lab on A Chip, 2021, 21, 1139-1149.	6.0	22

#	Article	IF	CITATIONS
19	Organotypic primary blood vessel models of clear cell renal cell carcinoma for single-patient clinical trials. Lab on A Chip, 2020, 20, 4420-4432.	6.0	21
20	Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides. International Journal of Biological Macromolecules, 2013, 55, 201-206.	7. 5	20
21	Primary head and neck tumour-derived fibroblasts promote lymphangiogenesis in a lymphatic organotypic co-culture model. EBioMedicine, 2021, 73, 103634.	6.1	19
22	Atovaquone: An Inhibitor of Oxidative Phosphorylation as Studied in Gynecologic Cancers. Cancers, 2022, 14, 2297.	3.7	17
23	Microfluidic Tumor-on-a-Chip Model to Study Tumor Metabolic Vulnerability. International Journal of Molecular Sciences, 2020, 21, 9075.	4.1	16
24	Social motility of biofilm-like microcolonies in a gliding bacterium. Nature Communications, 2021, 12, 5700.	12.8	16
25	Modulation of Antioxidant Potential with Coenzyme Q10 Suppressed Invasion of Temozolomide-Resistant Rat Clioma <i>In Vitro</i> and <i>In Vivo</i> Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	15
26	From microfluidics to microphysiological systems: Past, present, and future. Organs-on-a-Chip, 2022, 4, 100015.	3.2	15
27	Innate immune cell response to host-parasite interaction in a human intestinal tissue microphysiological system. Science Advances, 2022, 8, eabm8012.	10.3	10
28	Development of a Microfluidic Array to Study Drug Response in Breast Cancer. Molecules, 2019, 24, 4385.	3.8	9
29	Microphysiological model of renal cell carcinoma to inform anti-angiogenic therapy. Biomaterials, 2022, 283, 121454.	11.4	9
30	Role of the Skin Microenvironment in Melanomagenesis: Epidermal Keratinocytes and Dermal Fibroblasts Promote BRAF Oncogene-Induced Senescence Escape in Melanocytes. Cancers, 2022, 14, 1233.	3.7	6
31	Microfluidic Systems to Study Neutrophil Forward and Reverse Migration. Frontiers in Immunology, 2021, 12, 781535.	4.8	5
32	Hypoxia in Gliomas: Opening Therapeutical Opportunities Using a Mathematical-Based Approach. Advances in Experimental Medicine and Biology, 2016, 936, 11-29.	1.6	4
33	Breast cancer immunotherapy: Current biomarkers and the potential of inÂvitro assays. Current Opinion in Biomedical Engineering, 2022, 21, 100348.	3.4	2
34	The Importance of the Tumor Microenvironment to Understand Tumor Origin, Evolution, and Treatment Response. Cancers, 2022, 14, 1983.	3.7	1