Jinglei Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6899779/jinglei-yang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

203
papers
7,290
citations
h-index

8,553
ext. papers

78
g-index

6.9
avg, IF
L-index

#	Paper	IF	Citations
203	Retinal Dopamine D2 Receptors Participate in the Development of Myopia in Mice. 2022 , 63, 24		1
202	Autonomous Visualization of Damage in Polymers by Metal-Free Polymerizations of Microencapsulated Activated Alkynes <i>Advanced Science</i> , 2022 , e2105395	13.6	1
201	Eco-friendly synthesis of ferric ion-polyphenol-graphene aerogel for solar steam generation. <i>Materials Letters</i> , 2022 , 313, 131738	3.3	1
200	An even-load-distribution design for composite bolted joints using a novel circuit model and neural network. <i>Composite Structures</i> , 2022 , 279, 114709	5.3	2
199	In situ investigation of the healing process in dual-microcapsule self-healing materials by the Synchrotron Radiation Computed Tomography. <i>Composites Part A: Applied Science and Manufacturing</i> , 2022 , 106955	8.4	1
198	Effective combination of modeling and experimental data with deep metric learning for guided wave-based damage localization in plates. <i>Mechanical Systems and Signal Processing</i> , 2022 , 172, 108979	7.8	0
197	Catalytic pyrolysis of film waste over Co/Ni pillared montmorillonites towards H production <i>Chemosphere</i> , 2022 , 134440	8.4	O
196	Development of a versatile microencapsulation technique for aqueous phases using inverse emulsion. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 634, 127865	5.1	О
195	A deep learning-based composite design strategy for efficient selection of material and layup sequences from a given database. <i>Composites Science and Technology</i> , 2021 , 109154	8.6	1
194	Interdigitated Three-Dimensional Heterogeneous Nanocomposites for High-Performance Mechanochromic Smart Membranes. <i>ACS Nano</i> , 2021 ,	16.7	4
193	A deep learning approach for efficient topology optimization based on the element removal strategy. <i>Materials and Design</i> , 2021 , 212, 110179	8.1	2
192	Machine learning-based prediction of the translaminar R-curve of composites from simple tensile test of pre-cracked samples. <i>Journal of Micromechanics and Molecular Physics</i> , 2021 , 06, 2050017	1.4	3
191	Robust and impermeable metal shell microcapsules for one-component self-healing coatings. <i>Applied Surface Science</i> , 2021 , 546, 149114	6.7	5
190	Solid-State Thermal Memory of Temperature-Responsive Polymer Induced by Hydrogen Bonds. <i>Nano Letters</i> , 2021 , 21, 3843-3848	11.5	2
189	Mechanical response of shear thickening fluid filled composite subjected to different strain rates. <i>International Journal of Mechanical Sciences</i> , 2021 , 196, 106304	5.5	9
188	Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. <i>Nano-Micro Letters</i> , 2021 , 13, 122	19.5	22
187	Ecofriendly Microencapsulated Phase-Change Materials with Hybrid Core Materials for Thermal Energy Storage and Flame Retardancy. <i>Langmuir</i> , 2021 , 37, 6380-6387	4	2

(2020-2021)

186	Thermally conductive silicone composites modified by graphene-oxide aerogel beads loaded with phase change materials as efficient heat sinks. <i>Applied Thermal Engineering</i> , 2021 , 189, 116713	5.8	2
185	Mechanochromic Fluorescent Polymers Enabled by AIE Processes. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000311	4.8	23
184	Robust polyurea/poly(ureaformaldehyde) hybrid microcapsules decorated with Al2O3 nano-shell for improved self-healing performance. <i>Applied Surface Science</i> , 2021 , 542, 148561	6.7	9
183	Investigating the roles of fiber, resin, and stacking sequence on the low-velocity impact response of novel hybrid thermoplastic composites. <i>Composites Part B: Engineering</i> , 2021 , 207, 108554	10	19
182	Impregnating epoxy into N-doped-CNTs@carbon aerogel to prepare high-performance microwave-absorbing composites with extra-low filler content. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 140, 106159	8.4	10
181	Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature. <i>Materials Horizons</i> , 2021 , 8, 1488-1498	14.4	22
180	Dopamine Imaging in Living Cells and Retina by Surface-Enhanced Raman Scattering Based on Functionalized Gold Nanoparticles. <i>Analytical Chemistry</i> , 2021 , 93, 10841-10849	7.8	6
179	Microcapsule mechanics: Quasi-static compressive properties and the effect of liquid core. <i>International Journal of Mechanical Sciences</i> , 2021 , 205, 106604	5.5	1
178	Developing thermoplastic hybrid titanium composite laminates (HTCLS) at room temperature: Low-velocity impact analyses. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 149, 106552	8.4	2
177	Robust Microcapsules with Durable Superhydrophobicity and Superoleophilicity for Efficient Oil-Water Separation. <i>ACS Applied Materials & Discourse Separation</i> , 12, 57547-57559	9.5	18
176	Influence of UHMWPE fiber and Ti6Al4V metal surface treatments on the low-velocity impact behavior of thermoplastic fiber metal laminates. <i>Advanced Composites and Hybrid Materials</i> , 2020 , 3, 508-521	8.7	17
175	Holey, anti-impact and resilient thermoplastic urethane/carbon nanotubes fabricated by a low-cost Dapor induced phase separation Batrategy for the detection of human motions. <i>Composites Part A:</i> Applied Science and Manufacturing, 2020 , 136, 105974	8.4	5
174	Te Nanoneedles Induced Entanglement and Thermoelectric Improvement of SnSe. <i>Materials</i> , 2020 , 13,	3.5	2
173	Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures. <i>Materials Horizons</i> , 2020 , 7, 2378-2389	14.4	30
172	Dynamic plastic deformation and failure mechanisms of individual microcapsule and its polymeric composites. <i>Journal of the Mechanics and Physics of Solids</i> , 2020 , 139, 103933	5	13
171	Highly Thermally Conductive Dielectric Nanocomposites with Synergistic Alignments of Graphene and Boron Nitride Nanosheets. <i>Advanced Functional Materials</i> , 2020 , 30, 1910826	15.6	111
170	Low-velocity impact behaviors of a fully thermoplastic composite laminate fabricated with an innovative acrylic resin. <i>Composite Structures</i> , 2020 , 250, 112604	5.3	27
169	Bioinspired Nacre-like GO-based bulk with easy scale-up process and outstanding mechanical properties. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 132, 105829	8.4	13

168	Effect of Thiodiphenol-Based Epoxy Resin on the Thermal Properties of an Aluminum Oxide Composite. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 603-607	1.3	1
167	KIT ligand protects against both light-induced and genetic photoreceptor degeneration. <i>ELife</i> , 2020 , 9,	8.9	5
166	A review on the hybrid titanium composite laminates (HTCLs) with focuses on surface treatments, fabrications, and mechanical properties. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 128, 105679	8.4	35
165	On the metal thermoplastic composite interface of Ti alloy/UHMWPE-Elium laminates. <i>Composites Part B: Engineering</i> , 2020 , 181, 107578	10	24
164	A Facile Strategy To Prepare Smart Coatings with Autonomous Self-Healing and Self-Reporting Functions. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 4870-4877	9.5	34
163	Novel thermoplastic fiber metal laminates manufactured with an innovative acrylic resin at room temperature. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 138, 106043	8.4	13
162	Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. <i>Composites Part B: Engineering</i> , 2020 , 199, 108308	10	20
161	Reversible visible/near-infrared light responsive thin films based on indium tin oxide nanocrystals and polymer. <i>Scientific Reports</i> , 2020 , 10, 12808	4.9	1
160	Low-velocity impact behavior of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes. <i>Composites Communications</i> , 2020 , 22, 100527	6.7	7
159	A role of color vision in emmetropization in C57BL/6J mice. Scientific Reports, 2020, 10, 14895	4.9	3
158	A Study on the Thermal Conductivity of Poly(lactic acid)/Alumina Composites: The Effect of the Filler Treatment. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 229-238	1.3	2
157	Dynamic behavior of carbon nanofiber-modified epoxy with the effect of polydopamine-coated interface. <i>Mechanics of Advanced Materials and Structures</i> , 2020 , 27, 1827-1839	1.8	4
156	MITF protects against oxidative damage-induced retinal degeneration by regulating the NRF2 pathway in the retinal pigment epithelium. <i>Redox Biology</i> , 2020 , 34, 101537	11.3	6
155	Shell Formation Mechanism for Direct Microencapsulation of Nonequilibrium Pure Polyamine Droplet. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 22413-22423	3.8	5
154	Novel onion-like graphene aerogel beads for efficient solar vapor generation under non-concentrated illumination. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4400-4407	13	49
153	Robust multifunctional microcapsules with antibacterial and anticorrosion features. <i>Chemical Engineering Journal</i> , 2019 , 372, 496-508	14.7	24
152	Graphene Oxide Aerogel Beads Filled with Phase Change Material for Latent Heat Storage and Release. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3657-3664	6.1	33
151	A Study on the Motion of Partial Air Cushion Support Catamaran in Regular Head Waves. <i>Water</i> (Switzerland), 2019 , 11, 580	3	2

150	Fabrication of Water Soluble Polymer Capsules for Protecting Mineral Admixtures in Groundwater for Emergency Recovery of Sinkhole. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 1649-1656	1.3	
149	A comparison of thermoplastic polyurethane incorporated with graphene oxide and thermally reduced graphene oxide: Reduction is not always necessary. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47745	2.9	8
148	Skin-Inspired, Fully Autonomous Self-Warning and Self-Repairing Polymeric Material under Damaging Events. <i>Chemistry of Materials</i> , 2019 , 31, 2611-2618	9.6	29
147	Enhanced interphase between thermoplastic matrix and UHMWPE fiber sized with CNT-modified polydopamine coating. <i>Composites Science and Technology</i> , 2019 , 174, 212-220	8.6	51
146	A fast machine learning-based mask printability predictor for OPC acceleration 2019,		10
145	Robust Metallic Microcapsules: A Direct Path to New Multifunctional Materials. <i>ACS Applied Materials & Materials </i>	9.5	17
144	Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium . <i>Composites Part A: Applied Science and Manufacturing</i> , 2019 , 125, 105523	8.4	48
143	Recovery of Mode I self-healing interlaminar fracture toughness of fiber metal laminate by modified double cantilever beam test. <i>Composites Communications</i> , 2019 , 16, 25-29	6.7	16
142	Enhanced Mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes. <i>Composites Part B: Engineering</i> , 2019 , 178, 107450	10	37
141	Improved Bonding Strength Between Thermoplastic Resin and Ti Alloy with Surface Treatments by Multi-step Anodization and Single-step Micro-arc Oxidation Method: a Comparative Study. <i>ES Materials & Manufacturing</i> , 2019 ,	3.7	5
140	Effect of Surface Modifications and Their Reaction Conditions on Multi-Walled Carbon Nanotubes for Thermal Conductive Composite Material. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 152	5 ¹ 1332	3
139	Optimal Co(OH)[Nanowire Contents in Graphene Nanosheet Electrode on Its Electrochemical Performance of Supercapacitor. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 1350-1359	1.3	2
138	Optimization of shear thickening fluid encapsulation technique and dynamic response of encapsulated capsules and polymeric composite. <i>Composites Science and Technology</i> , 2019 , 170, 165-17	3 ^{8.6}	12
137	Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell. <i>Applied Energy</i> , 2018 , 215, 468-478	10.7	52
136	Fabrication and Release Behavior of Microcapsules with Double-Layered Shell Containing Clove Oil for Antibacterial Applications. <i>ACS Applied Materials & Double State S</i>	9.5	21
135	Prostaglandin F2Receptor Modulation Affects Eye Development in Guinea Pigs. <i>Basic and Clinical Pharmacology and Toxicology</i> , 2018 , 123, 263-270	3.1	8
134	Chemically and thermally stable isocyanate microcapsules having good self-healing and self-lubricating performances. <i>Chemical Engineering Journal</i> , 2018 , 346, 289-297	14.7	72
133	Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 6580-6592	9.5	54

132	Wear and friction of epoxy based nanocomposites with silica nanoparticles and wax-containing microcapsules. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 107, 607-615	8.4	40
131	Thermomechanical performance of cheetah skin carbon nanotube embedded composite: Isothermal and non-isothermal investigation. <i>Polymer</i> , 2018 , 145, 294-309	3.9	8
130	Large-sized graphene oxide as bonding agent for the liquid extrusion of nanoparticle aerogels. <i>Carbon</i> , 2018 , 136, 196-203	10.4	11
129	Hollow glass bubbles etched with tunable sizes of through-holes. <i>Journal of Microencapsulation</i> , 2018 , 35, 192-203	3.4	1
128	Flexible electrochromic materials based on CNT/PDA hybrids. <i>Advances in Colloid and Interface Science</i> , 2018 , 258, 21-35	14.3	13
127	Rate dependent behaviors of nickel-based microcapsules. <i>Applied Physics Letters</i> , 2018 , 112, 221905	3.4	7
126	Twist induced plasticity and failure mechanism of helical carbon nanotube fibers under different strain rates. <i>International Journal of Plasticity</i> , 2018 , 110, 74-94	7.6	16
125	1.20 Hygrothermal Effects in Composites 2018 , 502-519		1
124	Interfacial and Glass Transition Properties of Surface-Treated Carbon Fiber Reinforced Polymer Composites under Hygrothermal Conditions. <i>Engineered Science</i> , 2018 ,	3.8	14
123	The Study of Multi-walled Carbon Nanotube Surface and Matrix Structure for Thermal Conductive Composite Material. <i>Porrime</i> , 2018 , 42, 776-783	1	2
122	Healing mechanisms induced by synergy of Graphene-CNTs and microwave focusing effect for the thermoplastic polyurethane composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 106, 34-41	8.4	10
121	Influence of fiber type on the impact response of titanium-based fiber-metal laminates. <i>International Journal of Impact Engineering</i> , 2018 , 114, 32-42	4	50
120	Direct microencapsulation of pure polyamine by integrating microfluidic emulsion and interfacial polymerization for practical self-healing materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24092-240	9 5 3	23
119	Sealing of through-holes on hollow glass bubbles with graphene oxide. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 559, 258-265	5.1	3
118	Dopamine Receptor Subtypes Mediate Opposing Effects on Form Deprivation Myopia in Pigmented Guinea Pigs 2018 , 59, 4441-4448		18
117	Cause and Effect Relationship between Changes in Scleral Matrix Metallopeptidase-2 Expression and Myopia Development in Mice. <i>American Journal of Pathology</i> , 2018 , 188, 1754-1767	5.8	15
116	Response of aluminum corrugated sandwich panels under foam projectile impact Experiment and numerical simulation. <i>Journal of Sandwich Structures and Materials</i> , 2017 , 19, 595-615	2.1	14
115	Experimental and numerical investigations on hydrodynamic and aerodynamic characteristics of the tunnel of planing trimaran. <i>Applied Ocean Research</i> , 2017 , 63, 1-10	3.4	20

114	Interlaminar fracture properties of surface treated Ti-CFRP hybrid composites under long-term hygrothermal conditions. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 96, 9-17	8.4	22	
113	Novel CFD-based numerical schemes for conduction dominant encapsulated phase change materials (EPCM) with temperature hysteresis for thermal energy storage applications. <i>Energy</i> , 2017 , 132, 31-40	7.9	27	
112	Superlong Salicylideneaniline Semiconductor Nanobelts Prepared by a Magnetic Nanoparticle-Assisted Self-Assembly Process for Luminescence Thermochromism. <i>ACS Omega</i> , 2017 , 2, 2264-2272	3.9	1	
111	Unit cells for thermal analyses of syntactic foams with imperfect interfaces. <i>Composites Communications</i> , 2017 , 3, 28-32	6.7	4	
110	Dynamic failure of basalt/epoxy laminates under blastExperimental observation. <i>International Journal of Impact Engineering</i> , 2017 , 102, 16-26	4	19	
109	Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics. <i>Applied Energy</i> , 2017 , 190, 57-63	10.7	68	
108	Mechanical behaviors of Ti/CFRP/Ti laminates with different surface treatments of titanium sheets. <i>Composite Structures</i> , 2017 , 163, 21-31	5.3	63	
107	Modification of the contact surfaces for improving the puncture resistance of laminar structures. <i>Scientific Reports</i> , 2017 , 7, 6615	4.9	2	
106	Encapsulation of shear thickening fluid as an easy-to-apply impact-resistant material. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22472-22479	13	29	
105	Changes in retinal metabolic profiles associated with form deprivation myopia development in guinea pigs. <i>Scientific Reports</i> , 2017 , 7, 2777	4.9	17	
104	Tunable crack propagation behavior in carbon fiber reinforced plastic laminates with polydopamine and graphene oxide treated fibers. <i>Materials and Design</i> , 2017 , 113, 68-75	8.1	46	
103	Development of Shipping Logistics in China. Current Chinese Economic Report Series, 2017, 115-137	Ο		
102	Photopolymerization of Diacetylene on Aligned Multiwall Carbon Nanotube Microfibers for High-Performance Energy Devices. <i>ACS Applied Materials & Devices</i> , 2016, 8, 32643-32648	9.5	21	
101	Port choice strategies for container carriers in China: a case study of the Bohai Bay Rim port cluster. <i>International Journal of Shipping and Transport Logistics</i> , 2016 , 8, 129	1	10	
100	Graphene oxide beads for fast clean-up of hazardous chemicals. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9437-9446	13	40	
99	Tuneable electrochromism in weavable carbon nanotube/polydiacetylene yarns. <i>Carbon</i> , 2016 , 106, 11	0-11:1.74	24	
98	Effects of nano-silica contents on the properties of epoxy nanocomposites and Ti-epoxy assembles. <i>Composites Science and Technology</i> , 2016 , 129, 46-52	8.6	12	
97	On the dispersion systems of graphene-like two-dimensional materials: From fundamental laws to engineering guidelines. <i>Carbon</i> , 2016 , 107, 774-782	10.4	24	

96	Analysis of tunnel hydrodynamic characteristics for planing trimaran by model tests and numerical simulations. <i>Ocean Engineering</i> , 2016 , 113, 101-110	3.9	28
95	Tribological behaviors of binary and ternary epoxy composites functionalized with different microcapsules and reinforced by short carbon fibers. <i>Wear</i> , 2016 , 350-351, 89-98	3.5	34
94	Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. <i>Applied Energy</i> , 2016 , 162, 207-217	10.7	195
93	Quantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch. <i>Nanoscale</i> , 2016 , 8, 8547-52	7.7	9
92	Water resistant reactive microcapsules for self-healing coatings in harsh environments. <i>Polymer</i> , 2016 , 91, 33-40	3.9	49
91	Strengthening and failure mechanisms of individual carbon nanotube fibers under dynamic tensile loading. <i>Carbon</i> , 2016 , 102, 18-31	10.4	26
90	Numerical techniques to model conduction dominant phase change systems: A CFD approach and validation with DSC curve. <i>Energy and Buildings</i> , 2016 , 118, 240-248	7	13
89	Design of glass fiber reinforced plastics modified with CNT and pre-stretching fabric for potential sports instruments. <i>Materials and Design</i> , 2016 , 92, 621-631	8.1	29
88	Flexible polyurethane composites prepared by incorporation of polyethylenimine-modified slightly reduced graphene oxide. <i>Carbon</i> , 2016 , 98, 432-440	10.4	51
87	Epigallocatechin gallate decorated carbon nanotube chemiresistors for ultrasensitive glucose detection. <i>Organic Electronics</i> , 2016 , 28, 210-216	3.5	6
86	The effect of strain rate and filler volume fraction on the mechanical properties of hollow glass microsphere modified polymer. <i>Composites Part B: Engineering</i> , 2016 , 101, 53-63	10	29
85	Port connectivity in a logistic network: The case of Bohai Bay, China. <i>Transportation Research, Part E: Logistics and Transportation Review</i> , 2016 , 95, 341-354	9	39
84	Analyzing the spatialEemporal evolution of a gatewayE hinterland: A case study of Shanghai, China. <i>Transportation Research, Part E: Logistics and Transportation Review</i> , 2016 , 95, 355-367	9	14
83	Single-Step Process toward Achieving Superhydrophobic Reduced Graphene Oxide. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 10985-94	9.5	27
82	Multifunctional Alumina Composites with Toughening and Crack-Healing Features Via Incorporation of NiAl Particles. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 1618-1625	3.8	7
81	Improvement of impact-resistant property of glass fiber-reinforced composites by carbon nanotube-modified epoxy and pre-stretched fiber fabrics. <i>Journal of Materials Science</i> , 2015 , 50, 5978-5	993	28
80	Wear Resistance of Polymers With Encapsulated Epoxy-Amine Self-Healing Chemistry. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	6
79	On the study of electrochromism in multiwalled carbon nanotubepolydiacetylene composites. <i>Carbon</i> , 2015 , 90, 222-230	10.4	10

(2015-2015)

78	Mechanical and Interfacial Properties Characterisation of Single Carbon Fibres for Composite Applications. <i>Experimental Mechanics</i> , 2015 , 55, 1057-1065	2.6	18	
77	Self-cleaning engineered cementitious composites. <i>Cement and Concrete Composites</i> , 2015 , 64, 74-83	8.6	54	
76	Long-term moisture effects on the interfacial shear strength between surface treated carbon fiber and epoxy matrix. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 78, 311-317	8.4	36	
75	Salicylideneanilines encapsulated mesoporous silica functionalized gold nanoparticles: a low temperature calibrated fluorescent thermometer. <i>RSC Advances</i> , 2015 , 5, 77056-77061	3.7	3	
74	Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22043-22052	13	33	
73	Enhanced fracture toughness of carbon fabric/epoxy laminates with pristine and functionalized stacked-cup carbon nanofibers. <i>Engineering Fracture Mechanics</i> , 2015 , 148, 73-81	4.2	12	
72	Preparation of fully stabilized cubic-leucite composite through heat-treating Cs-substituted K-geopolymer composite at high temperatures. <i>Composites Science and Technology</i> , 2015 , 107, 44-53	8.6	16	
71	Effects of primer and annealing treatments on the shear strength between anodized Ti6Al4V and epoxy. <i>International Journal of Adhesion and Adhesives</i> , 2015 , 57, 49-56	3.4	26	
7º	Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 620, 253-261	5.3	87	
69	Path-independent digital image correlation with high accuracy, speed and robustness. <i>Optics and Lasers in Engineering</i> , 2015 , 65, 93-102	4.6	78	
68	Serum trace element differences between Schizophrenia patients and controls in the Han Chinese population. <i>Scientific Reports</i> , 2015 , 5, 15013	4.9	33	
67	Grafting Low Contents of Branched Polyethylenimine onto Carbon Fibers to Effectively Improve Their Interfacial Shear Strength with an Epoxy Matrix. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500122	4.6	41	
66	Multifunctional polymeric composites with wear-resistant, toughening, and self-healing features 2015 , 588-615			
65	Increased serum fibroblast growth factor 21 levels in patients with schizophrenia. <i>Australian and New Zealand Journal of Psychiatry</i> , 2015 , 49, 849-50	2.6	5	
64	Improved chemical stability of silver by selective distribution of silver particles on reduced graphene oxide nanosheets. <i>RSC Advances</i> , 2015 , 5, 49257-49262	3.7	11	
63	Polyvinylpyrrolidone-stabilized magnetic nickel nanochains for cancer hyperthermia and catalysis applications. <i>RSC Advances</i> , 2015 , 5, 22965-22971	3.7	13	
62	Finite element study of energy absorption foams for headgear in football (soccer) games. <i>Materials and Design</i> , 2015 , 88, 162-169	8.1	8	
61	Energy Absorption Mechanisms of Modified Double-Aluminum Layers Under Low-Velocity Impact. <i>International Journal of Applied Mechanics</i> , 2015 , 07, 1550086	2.4	14	

60	One-Part Self-Healing Anticorrosive Coatings: Design Strategy and Examples 2015, 491-535		1
59	Surface modifications of Ti alloy with tunable hierarchical structures and chemistry for improved metalpolymer interface used in deepwater composite riser. <i>Applied Surface Science</i> , 2015 , 328, 614-622	6.7	45
58	In-situ growth of Cu nanoparticles on reduced graphene oxide nanosheets and their excellent catalytic performance. <i>Ceramics International</i> , 2015 , 41, 4056-4063	5.1	16
57	Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4435-4444	13	100
56	Mechanical and Tribological Properties of Graphene Modified Epoxy Composites. <i>KMUTNB International Journal of Applied Science and Technology</i> , 2015 , 1-9		3
55	Self-healing epoxy via epoxydmine chemistry in dual hollow glass bubbles. <i>Composites Science and Technology</i> , 2014 , 94, 23-29	8.6	80
54	Wear resistant epoxy composites with diisocyanate-based self-healing functionality. <i>Wear</i> , 2014 , 313, 19-28	3.5	62
53	Development of self-healing polymers via amine poxy chemistry: II. Systematic evaluation of self-healing performance. <i>Smart Materials and Structures</i> , 2014 , 23, 065004	3.4	23
52	Development of self-healing polymers via amine poxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system. <i>Smart Materials and Structures</i> , 2014 , 23, 065003	3.4	29
51	Salt spray and EIS studies on HDI microcapsule-based self-healing anticorrosive coatings. <i>Progress in Organic Coatings</i> , 2014 , 77, 168-175	4.8	74
50	ZnNi alloy nanoparticles grown on reduced graphene oxide nanosheets and their magnetic and catalytic properties. <i>RSC Advances</i> , 2014 , 4, 386-394	3.7	21
49	Long-term performance of 1H, 1H?, 2H, 2H?-perfluorooctyl triethoxysilane (POTS) microcapsule-based self-healing anticorrosive coatings. <i>Journal of Intelligent Material Systems and Structures</i> , 2014 , 25, 98-106	2.3	15
48	Tribological properties of short carbon fibers reinforced epoxy composites. <i>Friction</i> , 2014 , 2, 226-239	5.6	40
47	A Versatile Approach towards Multifunctional Robust Microcapsules with Tunable, Restorable, and Solvent-Proof Superhydrophobicity for Self-Healing and Self-Cleaning Coatings. <i>Advanced Functional Materials</i> , 2014 , 24, 6751-6761	15.6	116
46	Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11614-11620	13	116
45	In situ growth of hollow CuNi alloy nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. <i>Applied Surface Science</i> , 2014 , 316, 575-581	6.7	46
44	Temperature effects on the mechanical behavior of aluminum foam under dynamic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 599, 174-179	5.3	47
43	Comparison study of fabrication of ceramic rotor using various manufacturing methods. <i>Ceramics International</i> , 2014 , 40, 12493-12502	5.1	9

42	Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating. <i>Composites Science and Technology</i> , 2014 , 99, 131-140	8.6	136
41	Short Carbon Fiber-Reinforced Epoxy Tribomaterials Self-Lubricated by Wax Containing Microcapsules. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2014 , 81,	2.7	19
40	Self-Lubricating and Wear Resistant Epoxy Composites Incorporated With Microencapsulated Wax. Journal of Applied Mechanics, Transactions ASME, 2014 , 81,	2.7	26
39	Biomimetics: A Versatile Approach towards Multifunctional Robust Microcapsules with Tunable, Restorable, and Solvent-Proof Superhydrophobicity for Self-Healing and Self-Cleaning Coatings (Adv. Funct. Mater. 43/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 6734-6734	15.6	1
38	A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: Green synthesis and catalytic properties. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 454-461	21.8	108
37	Fabrication and characterization of mini alumina ceramic turbine rotor using a tailored gelcasting process. <i>Ceramics International</i> , 2014 , 40, 7711-7722	5.1	10
36	Impact Behaviour of GLAREs with MWCNT Modified Epoxy Resins. <i>Experimental Mechanics</i> , 2014 , 54, 83-93	2.6	44
35	Reduced graphene oxide/CoSe2 nanocomposites: hydrothermal synthesis and their enhanced electrocatalytic activity. <i>Journal of Materials Science</i> , 2013 , 48, 7913-7919	4.3	9
34	Surface microstructures and epoxy bonded shear strength of Ti6Al4V alloy anodized at various temperatures. <i>Composites Science and Technology</i> , 2013 , 82, 15-22	8.6	47
33	Copper(II) Triflate Catalyzed Allylic Arylation of Allylic Alcohols: Direct and Selective Access to C-Allylanilines. <i>ChemCatChem</i> , 2013 , 5, 3882-3888	5.2	21
32	Mechanical and tribological properties of epoxy matrix composites modified with microencapsulated mixture of wax lubricant and multi-walled carbon nanotubes. <i>Friction</i> , 2013 , 1, 341-3	3 4 96	54
31	Platelet-like nickel hydroxide: synthesis and the transferring to nickel oxide as a gas sensor. <i>Journal of Colloid and Interface Science</i> , 2013 , 412, 100-6	9.3	11
30	Graphene Oxide Modified Ag2O Nanocomposites with Enhanced Photocatalytic Activity under Visible-Light Irradiation. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 6119-6125	2.3	49
29	Etched glass bubbles as robust micro-containers for self-healing materials. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12715-12720	13	40
28	Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. <i>Carbon</i> , 2013 , 59, 93-99	10.4	91
27	Creep-resistant behavior of MWCNT-polycarbonate melt spun nanocomposite fibers at elevated temperature. <i>Polymer</i> , 2013 , 54, 3723-3729	3.9	40
26	Metabolomic analysis reveals metabolic disturbance in the cortex and hippocampus of subchronic MK-801 treated rats. <i>PLoS ONE</i> , 2013 , 8, e60598	3.7	21
25	Tribological performance of silicone composite coatings filled with wax-containing microcapsules. <i>Wear</i> , 2012 , 296, 575-582	3.5	48

24	Synthesis of organic silane microcapsules for self-healing corrosion resistant polymer coatings. <i>Corrosion Science</i> , 2012 , 65, 561-566	6.8	137
23	RANSE simulation of high-speed planning craft in regular waves. <i>Journal of Marine Science and Application</i> , 2012 , 11, 447-452	1.2	6
22	NMDA receptor hypofunction induces dysfunctions of energy metabolism and semaphorin signaling in rats: a synaptic proteome study. <i>Schizophrenia Bulletin</i> , 2012 , 38, 579-91	1.3	22
21	Label-free quantitative proteomic analysis reveals dysfunction of complement pathway in peripheral blood of schizophrenia patients: evidence for the immune hypothesis of schizophrenia. <i>Molecular BioSystems</i> , 2012 , 8, 2664-71		47
20	Container port systems in China and the USA: a comparative study. <i>Maritime Policy and Management</i> , 2012 , 39, 461-478	2.5	26
19	Facile microencapsulation of HDI for self-healing anticorrosion coatings. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11123		249
18	Proteome alterations of cortex and hippocampus tissues in mice subjected to vitamin A depletion. Journal of Nutritional Biochemistry, 2011 , 22, 1003-8	6.3	12
17	Damage Detection Using In-Situ Piezo Transducers on a Composite Laminate Using Lamb Wave. <i>Applied Mechanics and Materials</i> , 2011 , 83, 267-273	0.3	1
16	Differential expression profiling of the synaptosome proteome in a rat model of antipsychotic resistance. <i>Brain Research</i> , 2009 , 1295, 170-8	3.7	11
15	Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. <i>Nature</i> , 2009 , 459, 68-72	50.4	1211
14	Microencapsulation of Isocyanates for Self-Healing Polymers. <i>Macromolecules</i> , 2008 , 41, 9650-9655	5.5	358
13	Improvement of the Mechanical Properties and Creep Resistance of SBS Block Copolymers by Nanoclay Fillers. <i>Macromolecular Materials and Engineering</i> , 2007 , 292, 23-32	3.9	28
12	Creep Resistant Polymer Nanocomposites Reinforced with Multiwalled Carbon Nanotubes. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 955-961	4.8	82
11	Application of timestress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. <i>Composites Science and Technology</i> , 2007 , 67, 2691-2698	8.6	59
10	A novel route for improving creep resistance of polymers using nanoparticles. <i>Composites Science and Technology</i> , 2007 , 67, 2297-2302	8.6	48
9	Resistance to time-dependent deformation of nanoparticle/polymer composites. <i>Applied Physics Letters</i> , 2007 , 91, 011901	3.4	12
8	Temperature dependence of crack initiation fracture toughness of various nanoparticles filled polyamide 66. <i>Polymer</i> , 2006 , 47, 679-689	3.9	50
7	On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions. <i>Polymer</i> , 2006 , 47, 2791-2801	3.9	105

LIST OF PUBLICATIONS

6	On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. <i>Polymer</i> , 2006 , 47, 6745-6758	3.9	126
5	The essential work of fracture of polyamide 66 filled with TiO nanoparticles. <i>Composites Science and Technology</i> , 2005 , 65, 2374-2379	8.6	56
4	Creep resistant polymeric nanocomposites. <i>Polymer</i> , 2004 , 45, 3481-3485	3.9	132
3	Rational Design of All Resistive Multifunctional Sensors with Stimulus Discriminability. <i>Advanced Functional Materials</i> ,2107570	15.6	6
2	Increasing ionic conductivity in Li0.33La0.56TiO3 thin-films via optimization of processing atmosphere and temperature. <i>Rare Metals</i> ,1	5.5	1
1	Machine Learning Applications in Composites: Manufacturing, Design, and Characterization. <i>ACS Symposium Series</i> ,65-85	0.4	