Alicia Cachafeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6899697/publications.pdf

Version: 2024-02-01

1163117 1199594 60 218 8 12 citations g-index h-index papers 60 60 60 59 docs citations times ranked citing authors all docs

#	ARTICLE	IF	CITATIONS
1	The Gibbsa€ Wilbranam phenomenon in the approximation of <mmi:math altimg="si5.svg" display="inline" id="d1e870" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo></mml:mo>x<mml:mo> </mml:mo> </mml:mrow><td><i>।> थ्र.</i>काml:rr</td><td>ıatth></td></mmi:math>	<i>।> थ्र.</i> काml:rr	ıatth>
2	Mechanical Models for Hermite Interpolation on the Unit Circle. Mathematics, 2021, 9, 1043.	2.2	3
3	Gibbs–Wilbraham phenomenon on Lagrange interpolation based on analytic weights on the unit circle. Journal of Computational and Applied Mathematics, 2020, 365, 112376.	2.0	5
4	Classical Lagrange Interpolation Based on General Nodal Systems at Perturbed Roots of Unity. Mathematics, 2020, 8, 498.	2.2	2
5	Szegő transformation and zeros of analytic perturbations of Chebyshev weights. Journal of Mathematical Analysis and Applications, 2019, 470, 571-583.	1.0	2
6	Algorithms, Convergence and Rate of Convergence for an Interpolation Model Between Lagrange and Hermite. Results in Mathematics, 2018, 73, 1.	0.8	1
7	Gibbs–Wilbraham oscillation related to an Hermite interpolation problem on the unit circle. Journal of Computational and Applied Mathematics, 2018, 344, 657-675.	2.0	3
8	An interpolation problem on the circle between Lagrange and Hermite problems. Journal of Approximation Theory, 2017, 215, 118-144.	0.8	4
9	A note on the rate of convergence for Chebyshev-Lobatto and Radau systems. Open Mathematics, 2016, 14, 156-166.	1.0	0
10	Gibbs phenomenon in the Hermite interpolation on the circle. Applied Mathematics and Computation, 2015, 253, 274-286.	2.2	9
11	On the asymptotic constant for the rate of Hermite–Fejér convergence on Chebyshev nodes. Acta Mathematica Hungarica, 2015, 147, 32-45.	0.5	2
12	Convergence of Hermite interpolants on the circle using two derivatives. Journal of Computational and Applied Mathematics, 2015, 284, 58-68.	2.0	3
13	Hermite Interpolation on the Unit Circle Considering up to the Second Derivative. ISRN Mathematical Analysis, 2014, 2014, 1-10.	0.4	1
14	Algorithms and convergence for Hermite interpolation based on extended Chebyshev nodal systems. Applied Mathematics and Computation, 2014, 234, 223-236.	2.2	3
15	Asymptotic constants for the error of Hermite-Fej \tilde{A} ©r interpolation on the unit circle. Electronic Notes in Discrete Mathematics, 2013, 43, 397-400.	0.4	1
16	Modified Gauss rules for approximate calculation of some strongly singular integrals. Electronic Notes in Discrete Mathematics, 2013, 43, 411-416.	0.4	1
17	Rate of Convergence of Hermite-Fejér Interpolation on the Unit Circle. Journal of Applied Mathematics, 2013, 2013, 1-8.	0.9	5
18	About Nodal Systems for Lagrange Interpolation on the Circle. Journal of Applied Mathematics, 2012, 2012, 1-11.	0.9	1

#	Article	IF	CITATIONS
19	An Extension of Fejér's Condition for Hermite Interpolation. Complex Analysis and Operator Theory, 2012, 6, 651-664.	0.6	5
20	About measures and nodal systems for which the Hermite interpolants uniformly converge to continuous functions on the circle and interval. Applied Mathematics and Computation, 2011, 218, 4813-4813.	2.2	2
21	Some improvements to the Hermite–Fejér interpolation on the circle and bounded interval. Computers and Mathematics With Applications, 2011, 61, 1228-1240.	2.7	8
22	Complex measures having quadrature formulae with optimal exactness. Acta Mathematica Hungarica, 2010, 126, 51-64.	0.5	0
23	Algorithms for solving Hermite interpolation problems using the Fast Fourier Transform. Journal of Computational and Applied Mathematics, 2010, 235, 882-894.	2.0	11
24	A bi-orthogonal system of trigonometric functions. Integral Transforms and Special Functions, 2010, 21, 57-74.	1.2	0
25	Quadrature rules for polynomial modifications of Bernstein measures exact for analytic functions. Integral Transforms and Special Functions, 2010, 21, 409-422.	1.2	0
26	Characterizing the measures on the unit circle with exact quadrature formulas in the space of polynomials. Computers and Mathematics With Applications, 2009, 58, 1370-1382.	2.7	2
27	Characterizing curves satisfying the Gauss–Christoffel theorem. Journal of Computational and Applied Mathematics, 2009, 233, 630-633.	2.0	1
28	Nodal systems with maximal domain of exactness for Gaussian quadrature formulas. Journal of Computational and Applied Mathematics, 2008, 212, 272-281.	2.0	2
29	About a system of anti-periodic trigonometric functions. Computers and Mathematics With Applications, 2008, 56, 1526-1537.	2.7	1
30	Characterizing orthogonality measures on the bounded interval < sup>1 < /sup>. Integral Transforms and Special Functions, 2008, 19, 351-366.	1.2	0
31	A new numerical quadrature formula on the unit circle. Numerical Algorithms, 2007, 44, 391-401.	1.9	5
32	Orthogonal polynomials with respect to the sum of an arbitrary measure and a Bernstein–Szegö measure. Advances in Computational Mathematics, 2007, 26, 81-104.	1.6	4
33	A SYSTEM OF BIORTHOGONAL TRIGONOMETRIC POLYNOMIALS. , 2007, , .		2
34	A scalar Riemann boundary value problem approach to orthogonal polynomials on the circle. Journal of Approximation Theory, 2006, 141, 174-181.	0.8	4
35	Quasi-orthogonality properties and orthogonality with respect to the Chebyshev perturbation of a Bernstein measure. Integral Transforms and Special Functions, 2006, 17, 485-497.	1.2	1
36	Asymptotic properties of Chebyshev–Sobolev orthogonal polynomials. Journal of Computational and Applied Mathematics, 2005, 178, 63-74.	2.0	1

3

#	Article	IF	CITATIONS
37	Connection between orthogonal polynomials on the unit circle and bounded interval. Journal of Computational and Applied Mathematics, 2005, 177, 205-223.	2.0	10
38	Asymptotics on the support for sobolev orthogonal polynomials on a bounded interval. Computers and Mathematics With Applications, 2005, 50, 381-391.	2.7	0
39	Connections between Interval and Unit Circle for Sobolev Orthogonal Polynomials. Strong Asymptotics on the Real Line. Acta Applicandae Mathematicae, 2005, 86, 221-236.	1.0	1
40	A characterization of the four Chebyshev orthogonal families. International Journal of Mathematics and Mathematical Sciences, 2005, 2005, 2071-2079.	0.7	7
41	Second degree functionals on the unit circle. Integral Transforms and Special Functions, 2004, 15, 281-294.	1.2	4
42	On asymptotic properties of Freud–Sobolev orthogonal polynomials. Journal of Approximation Theory, 2003, 125, 26-41.	0.8	10
43	Lebesgue perturbation of a quasi-definite Hermitian functional. The positive definite case. Linear Algebra and Its Applications, 2003, 369, 235-250.	0.9	9
44	Extension inside the disk of asymptotics for Sobolev orthogonal polynomials. Computers and Mathematics With Applications, 2003, 46, 1263-1272.	2.7	1
45	A necessary condition for the extension of SzegÅ's asymptotics inside the disk in the Sobolev case. Journal of Computational and Applied Mathematics, 2003, 153, 73-78.	2.0	1
46	Second kind functionals for the Laguerre-Hahn affine class on the unit circle. Bulletin of the Belgian Mathematical Society - Simon Stevin, 2003, 10 , .	0.2	2
47	Strong asymptotics inside the unit disk for Sobolev orthogonal polynomials. Computers and Mathematics With Applications, 2002, 44, 253-261.	2.7	4
48	Differential properties for a class of Sobolev orthogonal polynomials. Journal of Computational and Applied Mathematics, 2002, 146, 361-372.	2.0	0
49	Differential properties for Sobolev orthogonality on the unit circle. Journal of Computational and Applied Mathematics, 2001, 133, 231-239.	2.0	0
50	Title is missing!. Acta Applicandae Mathematicae, 2000, 61, 81-86.	1.0	0
51	Polynomials with minimal norm and new results in SzegÅ"s theory. Complex Variables and Elliptic Equations, 2000, 43, 151-167.	0.2	3
52	A family of Sobolev orthogonal polynomials on the unit circle. Journal of Computational and Applied Mathematics, 1999, 105, 163-173.	2.0	7
53	Strong Asymptotics for the Continuous Sobolev Orthogonal Polynomials on the Unit Circle. Journal of Approximation Theory, 1999, 100, 381-391.	0.8	11
54	Lebesgue Sobolev orthogonality on the unit circle. Journal of Computational and Applied Mathematics, 1998, 96, 27-34.	2.0	7

#	Article	IF	CITATIONS
55	Kernels on the unit circle. Orthogonality. Journal of Computational and Applied Mathematics, 1996, 72, 407-420.	2.0	О
56	A generalization of the associated functional to the Lebesgue measure. Journal of Computational and Applied Mathematics, 1995, 57, 283-291.	2.0	0
57	Orthogonal Polynomials of Sobolev Type on the Unit Circle. Journal of Approximation Theory, 1994, 78, 127-146.	0.8	14
58	Modifications of Toeplitz Matrices: Jump Functions. Rocky Mountain Journal of Mathematics, 1993, 23, 521.	0.4	25
59	Perturbations in Toeplitz matrices. II. Asymptotic properties. Journal of Mathematical Analysis and Applications, 1991, 156, 44-51.	1.0	3
60	The characterization of the quasi-typical extension of an inner product. Journal of Approximation Theory, 1990, 62, 235-242.	0.8	2