List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6898711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 2010, 45, 1-33.	1.7	2,042
2	Effect of reinforcing fillers on the rheology of polymer melts. Journal of Rheology, 1992, 36, 1165-1182.	1.3	258
3	Physicoâ€Mechanical Properties of Biodegradable Starch Nanocomposites. Macromolecular Materials and Engineering, 2009, 294, 169-177.	1.7	225
4	Cellulose micro/nanocrystals reinforced polyurethane. Journal of Materials Research, 2006, 21, 870-881.	1.2	211
5	Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers, 2011, 84, 203-210.	5.1	207
6	Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydrate Polymers, 2014, 101, 1018-1026.	5.1	192
7	A short review on novel biocomposites based on plant oil precursors. European Polymer Journal, 2013, 49, 1243-1256.	2.6	181
8	Characterization of nanocellulose―reinforced shape memory polyurethanes. Polymer International, 2008, 57, 651-659.	1.6	162
9	Polyurethane Foams Obtained from Castor Oil-based Polyol and Filled with Wood Flour. Journal of Composite Materials, 2009, 43, 3057-3072.	1.2	149
10	Crystallization of polydimethylsiloxane: effect of silica filler and curing. Polymer, 1998, 39, 4897-4903.	1.8	140
11	Mechanical characterization of polypropylene-wood flour composites. Journal of Applied Polymer Science, 2003, 88, 1420-1428.	1.3	128
12	Modified woodflour as thermoset fillersPart I. Effect of the chemical modification and percentage of filler on the mechanical properties. Polymer, 2001, 42, 815-825.	1.8	110
13	Thermal and dynamic mechanical characterization of polypropylene-woodflour composites. Polymer Engineering and Science, 2002, 42, 733-742.	1.5	106
14	Characterization of chitosan/caseinate films. Journal of Applied Polymer Science, 2008, 107, 1080-1090.	1.3	106
15	A comparison between the physico-chemical properties of tuber and cereal starches. Food Research International, 2009, 42, 976-982.	2.9	104
16	Modified woodflour as thermoset fillers. Thermochimica Acta, 2001, 372, 45-57.	1.2	103
17	Dependence of the mechanical properties of woodflour-polymer composites on the moisture content. Journal of Applied Polymer Science, 1998, 68, 2069-2076.	1.3	100
18	Moisture diffusion in polyester–woodflour composites. Polymer, 1999, 40, 7313-7320.	1.8	99

#	Article	IF	CITATIONS
19	Polyurethanes from tung oil: Polymer characterization and composites. Polymer Engineering and Science, 2009, 49, 685-692.	1.5	85
20	Caseinate films modified with tung oil. Food Hydrocolloids, 2010, 24, 800-808.	5.6	85
21	Compounding Fumed Silicas into Polydimethylsiloxane: Bound Rubber and Final Aggregate Size. Journal of Colloid and Interface Science, 1997, 195, 329-337.	5.0	82
22	Analysis of the creep behavior of polypropylene-woodflour composites. Polymer Engineering and Science, 2004, 44, 1594-1603.	1.5	79
23	Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheologica Acta, 2004, 43, 293-303.	1.1	76
24	Liquid rubber modified vinyl ester resins: fracture and mechanical behavior. Polymer, 2001, 42, 3723-3730.	1.8	74
25	Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy. Polymer Testing, 2013, 32, 115-122.	2.3	70
26	Mechanical properties of linseed oil monoglyceride maleate/styrene copolymers. Journal of Applied Polymer Science, 2005, 97, 825-836.	1.3	69
27	Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. Journal of Applied Polymer Science, 2010, 115, 1215-1225.	1.3	68
28	Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polymer Degradation and Stability, 2012, 97, 2021-2026.	2.7	66
29	Castor oilâ€based polyurethanes containing cellulose nanocrystals. Polymer Engineering and Science, 2011, 51, 1389-1396.	1.5	61
30	Biodegradation of a vegetable oil based polyurethane and wood flour composites. Polymer Testing, 2012, 31, 7-15.	2.3	61
31	Highâ€strength composites based on tung oil polyurethane and wood flour: Effect of the filler concentration on the mechanical properties. Polymer Engineering and Science, 2009, 49, 713-721.	1.5	60
32	Water vapor absorption and permeability of films based on chitosan and sodium caseinate. Journal of Applied Polymer Science, 2009, 111, 2777-2784.	1.3	57
33	Composites from sawdust and unsaturated polyester. Journal of Applied Polymer Science, 1996, 61, 119-124.	1.3	52
34	Polyanilineâ€modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polymer International, 2011, 60, 743-750.	1.6	52
35	Nanocomposites with superparamagnetic behavior based on a vegetable oil and magnetite nanoparticles. European Polymer Journal, 2014, 53, 90-99.	2.6	49
36	Microfoams based on castor oil polyurethanes and vegetable fibers. Journal of Applied Polymer Science, 2007, 105, 2791-2800.	1.3	48

#	Article	IF	CITATIONS
37	Polymeric networks based on tung oil: Reaction and modification with green oil monomers. European Polymer Journal, 2015, 67, 551-560.	2.6	48
38	Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers. Ultrasonics Sonochemistry, 2014, 21, 1641-1648.	3.8	45
39	Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. European Polymer Journal, 2018, 102, 151-160.	2.6	44
40	Kinetic and statistical aspects of the formation of polyurethanes from toluene diisocyanate. Polymer, 1986, 27, 425-430.	1.8	43
41	Mechanical properties of woodflour/linseed oil resin composites. Polymer International, 2005, 54, 829-836.	1.6	43
42	Recent developments in plant oil based functional materials. Polymer International, 2016, 65, 28-38.	1.6	42
43	Rapeseed oilâ€based polyurethane foams modified with glycerol and cellulose micro/nanocrystals. Journal of Applied Polymer Science, 2015, 132, .	1.3	40
44	Nanocomposites of Waterborne Polyurethane Reinforced with Cellulose Nanocrystals from Sisal Fibres. Journal of Polymers and the Environment, 2018, 26, 1869-1880.	2.4	39
45	Rheological study of the curing kinetics of epoxy–phenol novolac resin. Journal of Applied Polymer Science, 2006, 102, 4430-4439.	1.3	38
46	Composite films based on shape memory polyurethanes and nanostructured polyaniline or cellulose–polyaniline particles. Synthetic Metals, 2012, 162, 1654-1664.	2.1	37
47	Rheological and Mechanical Properties of Filled Rubber: Silica-Silicone. Rubber Chemistry and Technology, 1994, 67, 820-833.	0.6	36
48	Vegetable oil/styrene thermoset copolymers with shape memory behavior and damping capacity. Polymer International, 2012, 61, 735-742.	1.6	34
49	Bio-based waterborne polyurethanes reinforced with cellulose nanocrystals as coating films. Progress in Organic Coatings, 2020, 144, 105649.	1.9	34
50	Shape memory segmented polyurethanes: dependence of behavior on nanocellulose addition and testing conditions. Polymer International, 2012, 61, 321-327.	1.6	32
51	Cellulose nanocrystals in aqueous suspensions: rheology of lyotropic chiral liquid crystals. Cellulose, 2019, 26, 2317-2332.	2.4	31
52	Cellulose nanocrystals suspensions: Liquid crystal anisotropy, rheology and films iridescence. Carbohydrate Polymers, 2021, 261, 117848.	5.1	31
53	Epoxy-based divinyl ester resin/styrene copolymers: Composition dependence of the mechanical and thermal properties. Journal of Applied Polymer Science, 1997, 66, 1059-1066.	1.3	30
54	Influence of fiber volume fraction and aspect ratio in resol-sisal composites. Journal of Applied Polymer Science, 2003, 89, 2714-2722.	1.3	30

#	Article	IF	CITATIONS
55	Effect of crosslinking on the properties of sodium caseinate films. Journal of Applied Polymer Science, 2010, 116, 18-26.	1.3	30
56	Linseed Oil-Based Polyurethane Rigid Foams: Synthesis and Characterization. Journal of Renewable Materials, 2015, 3, 3-13.	1.1	30
57	Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. Journal of Applied Polymer Science, 2008, 107, 2977-2985.	1.3	29
58	Modulus of polybutadiene networks made by hydrosilation crosslinking. Macromolecules, 1988, 21, 2484-2491.	2.2	26
59	Plant Oil-Based Waterborne Polyurethanes: A Brief Review. Journal of Renewable Materials, 2020, 8, 579-601.	1.1	26
60	Statistics of novolacs. Industrial & Engineering Chemistry Product Research and Development, 1984, 23, 370-374.	0.5	25
61	Ageing of thermosets based on tung oil/styrene/divinylbenzene. Polymer Testing, 2013, 32, 249-255.	2.3	25
62	Waterborne polyurethane nanocomposites based on vegetable oil and microfibrillated cellulose. Journal of Applied Polymer Science, 2016, 133, .	1.3	25
63	Physical and mechanical properties of a vegetable oil based nanocomposite. European Polymer Journal, 2018, 98, 116-124.	2.6	25
64	Polyurethane-ductilized epoxy resins. Journal of Applied Polymer Science, 1998, 68, 1781-1789.	1.3	24
65	EPR spectroscopy applied to the study of the TEMPO mediated oxidation of nanocellulose. Carbohydrate Polymers, 2016, 136, 744-749.	5.1	24
66	Comparative effects of two different crosslinkers on the properties of vegetable oilâ€based polyurethanes. Journal of Applied Polymer Science, 2020, 137, 48741.	1.3	23
67	Curing kinetics of divinyl ester resins with styrene. Journal of Applied Polymer Science, 1999, 74, 1044-1053.	1.3	22
68	Effect of natural rubber on wood-reinforced tannin composites. Journal of Applied Polymer Science, 2007, 105, 1825-1832.	1.3	21
69	Composite films obtained from a waterborne biopolyurethane. Incorporation of tartaric acid and nanocellulose. Industrial Crops and Products, 2019, 142, 111879.	2.5	21
70	Some aspects of curing novolac with hexamethylenetetramine. Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20, 311-318.	0.8	20
71	FTIR spectroscopy applied to woodflour. Composite Interfaces, 1996, 4, 119-132.	1.3	19
72	Rubber modified vinyl ester resins of different molecular weights. Journal of Materials Science, 2002, 37, 4117-4126.	1.7	19

#	Article	IF	CITATIONS
73	Thermal and mechanical properties of woodflour/tannin adhesive composites. Journal of Applied Polymer Science, 2004, 91, 3074-3082.	1.3	19
74	Lignocellulosic materials and unsaturated polyester matrix composites: Interfacial modifications. Composite Interfaces, 2005, 12, 3-24.	1.3	18
75	Composites from PMMA modified thermosets and chemically treated woodflour. Polymer Engineering and Science, 2003, 43, 999-1010.	1.5	17
76	Poly(methyl methacrylate)â€modified vinyl ester thermosets: Morphology, volume shrinkage, and mechanical properties. Journal of Applied Polymer Science, 2007, 106, 4007-4017.	1.3	16
77	Resin–Sisal and Wood Flour Composites Made from Unsaturated Polyester Thermosets. Composite Interfaces, 2009, 16, 639-657.	1.3	16
78	Epoxy-urethane copolymers: Relation between morphology and properties. Journal of Applied Polymer Science, 2001, 82, 2544-2552.	1.3	15
79	Morphology of rubber-modified vinyl ester resins cured at different temperatures. Journal of Applied Polymer Science, 2003, 89, 274-283.	1.3	15
80	Wood Flour — Recycled Polyol Based Polyurethane Lightweight Composites. Journal of Composite Materials, 2009, 43, 2871-2884.	1.2	15
81	Structural properties of vegetable oil thermosets: Effect of crosslinkers, modifiers and oxidative aging. European Polymer Journal, 2020, 124, 109470.	2.6	15
82	Thermodynamic, morphological, mechanical and fracture properties of poly(methyl) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 3 1.8	382 Td (meth 14
83	Aging study of linseed oil resin/styrene thermosets and their composites with wood flour. Polymer International, 2007, 56, 875-881.	1.6	14
84	Study of nanoreinforced shape memory polymers processed by casting and extrusion. Polymer Composites, 2011, 32, 455-463.	2.3	14
85	Quasibinary and quasiternary styrene, dimethacrylate resin, and CTBN (or VTBN) liquid rubber systems: phase diagrams, interaction parameters and cured materials morphologies. Polymer, 2001, 42, 6503-6513.	1.8	13
86	Moisture dependence of the properties of composites made from tung oil based polyurethane and wood flour. Journal of Polymer Research, 2012, 19, 1.	1.2	13
87	Maleic anhydride grafting of polypropylene: peroxide and solvent effects. Plastics, Rubber and Composites, 2006, 35, 117-123.	0.9	12
88	Creep behavior of wood flour composites made from linseed oilâ€based polyester thermosets. Journal of Applied Polymer Science, 2011, 121, 2626-2633.	1.3	12
89	Magnetism and structure of nanocomposites made from magnetite and vegetable oil based polymeric matrices. Materials Chemistry and Physics, 2016, 175, 81-91.	2.0	12
90	Statistical aspects for the production of novolacs. Polymer, 1982, 23, 263-266.	1.8	11

#	Article	IF	CITATIONS
91	Curing kinetics of epoxy-urethane copolymers. Journal of Applied Polymer Science, 2001, 79, 1771-1779.	1.3	11
92	AFM fracture surface study of vinylester and unsaturated polyester based thermosets. Journal of Materials Science, 2006, 41, 6154-6158.	1.7	11
93	Vegetable Oil Based-Polymers Reinforced with Wood Flour. Molecular Crystals and Liquid Crystals, 2008, 484, 143/[509]-150/[516].	0.4	11
94	Chemical and mechanical characterization of two Southâ€American plant fibers for polymer reinforcement: Caranday Palm and Phormium. Journal of Applied Polymer Science, 2010, 115, 2236-2245.	1.3	11
95	Nanocellulose reinforced polyurethane obtained from hydroxylated soybean oil. IOP Conference Series: Materials Science and Engineering, 2016, 111, 012011.	0.3	11
96	Composites made from a soybean oil biopolyurethane and cellulose nanocrystals. Polymer Engineering and Science, 2018, 58, 125-132.	1.5	11
97	Reactivity ratios and copolymer composition evolution during styrene/dimethacrylate freeâ€radical crosslinking copolymerization. Journal of Applied Polymer Science, 2010, 115, 3081-3091.	1.3	10
98	Smart and structural thermosets from the cationic copolymerization of a vegetable oil. Journal of Applied Polymer Science, 2012, 124, 5071-5078.	1.3	10
99	Composites Made from Lignocellulosics and Thermoset Polymers. Molecular Crystals and Liquid Crystals, 2000, 353, 95-108.	0.3	9
100	PMMA-modified divinylester/styrene resins: Phase diagrams and morphologies. Journal of Applied Polymer Science, 2006, 100, 4539-4549.	1.3	9
101	Toughening of wood particle composites—Effects of sisal fibers. Journal of Applied Polymer Science, 2006, 101, 1982-1987.	1.3	9
102	Nanocelluloses Reinforced Bio-Waterborne Polyurethane. Polymers, 2021, 13, 2853.	2.0	8
103	Interfacial Interactions in Silica Reinforced Silicones. Materials Research Society Symposia Proceedings, 1989, 170, 303.	0.1	7
104	Magnetic Remote Activation of Shape Recovery in Nanocomposites Based on Tung Oil and Styrene. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800311.	0.8	7
105	Natural Composites: Polymeric Matrices Based on Vegetable Resources. Molecular Crystals and Liquid Crystals, 2006, 448, 145/[747]-159/[761].	0.4	6
106	Free-radical polymerization induced macrophase separation in poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 3956-3965.) 147 Td (1 2.6	methacrylate) 6
107	Polyurethane Composites Synthesized Using Natural Oil-Based Polyols and Sisal Fibers. Journal of Renewable Materials, 2018, 6, 426-437.	1.1	6
108	Moisture absorption effects on the thermal and mechanical properties of wood flour/linseed oil resin composites. Polymer International, 2007, 56, 779-786.	1.6	5

MIRTA I ARANGUREN

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Glycerol. Journal of Renewable Materials, 2016, 4, 275-284.	1.1	4
110	Analysis of a styrene–divinylester copolymerization: reaction heats, double bond conversions and average sequence lengths. Polymer, 2000, 41, 3317-3329.	1.8	3
111	Effect of the composition and chemical aging in tung oil-styrene networks: Free volume and dynamic-mechanical properties. European Polymer Journal, 2017, 87, 231-240.	2.6	3
112	Nanocomposites Based on Waterborne Polyurethane Matrix and Fe 3 O 4 Nanoparticles: Synthesis and Characterization. Advanced Engineering Materials, 2021, 23, 2100381.	1.6	3
113	Responsive Nanocellulose Composites. Materials and Energy, 2014, , 181-199.	2.5	2
114	Natural Fiber-Polypropylene Composites Made from Caranday Palm. Journal of Renewable Materials, 2016, 4, 101-112.	1.1	2
115	Curing of epoxy-urethane copolymers in a heated mold: Effect of the curing conditions on the phase-separation process. Journal of Applied Polymer Science, 2001, 81, 889-900.	1.3	1
116	Solid "Green" Polyurethanes Based on Rapeseed Oil Polyol and Modified with Glycerol and Microcellulose. Journal of Renewable Materials, 2016, 4, 266-274.	1.1	1
117	Selected Topics on Polypropylene/Wood Flour Composites: Thermal, Mechanical, and Time-Dependent Response. , 0, , 150-177.		0
118	Nanocelluloses Reinforced Bio-Waterborne Polyurethane. Polymers, 2021, 13, .	2.0	0