Magdalena J Å**å**usarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6898617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1â€Encoded UL49.5 Protein Fragments. Chemistry and Biodiversity, 2021, 18, e2000883.	2.1	1
2	PTD4 Peptide Increases Neural Viability in an In Vitro Model of Acute Ischemic Stroke. International Journal of Molecular Sciences, 2021, 22, 6086.	4.1	5
3	Modeling protein structures with the coarse-grained UNRES force field in the CASP14 experiment. Journal of Molecular Graphics and Modelling, 2021, 108, 108008.	2.4	17
4	Structure determination of UL49.5 transmembrane protein from bovine herpesvirus 1 by NMR spectroscopy and molecular dynamics. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 926-938.	2.6	8
5	Vasopressin V1a and V1b receptor modulators: a patent review (2012 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 711-722.	5.0	6
6	Exploring the Ligand Recognition Properties of the Human Vasopressin <scp>V</scp> 1a Receptor Using <scp>QSAR</scp> and Molecular Modeling Studies. Chemical Biology and Drug Design, 2014, 83, 207-223.	3.2	10
7	Theoretical studies, synthesis, and biological activity of 1-[(4-methylphenyl)sulfonyl]-5-oxo-2,3,4,5-tetrahydro-1H-1-benzazepine-4-carbonitrile (C9) as a non-peptide antagonist of the arginine vasopressin V1a and V2 receptors. Medicinal Chemistry Research, 2014, 23, 1581-1590.	2.4	4
8	Interactions of vasopressin and oxytocin receptors with vasopressin analogues substituted in position 2 with 3,3′â€diphenylalanine – a molecular docking study. Journal of Peptide Science, 2013, 19, 118-126.	1.4	6
9	Molecular modeling study of the opioid receptor interactions with series of cyclic deltorphin analogues. Journal of Peptide Science, 2011, 17, 554-564.	1.4	0
10	Conformational stability of the fullâ€ e tom hexameric model of the ClpB chaperone from <i>Escherichia coli</i> . Biopolymers, 2010, 93, 47-60.	2.4	14
11	Influence of bulky 3,3′-diphenylalanine enantiomers replacing position 2 of AVP analogues on their conformations: NMR and molecular modeling studies. European Journal of Medicinal Chemistry, 2010, 45, 4065-4073.	5.5	8
12	Oxytocin-Gly-Lys-Arg: A Novel Cardiomyogenic Peptide. PLoS ONE, 2010, 5, e13643.	2.5	23
13	Molecular Dynamics Study of the Internal Water Molecules in Vasopressin and Oxytocin Receptors. Protein and Peptide Letters, 2009, 16, 342-350.	0.9	4
14	Molecular Docking-Based Study of Vasopressin Analogues Modified at Positions 2 and 3 withN-Methylphenylalanine:A Influence on Receptor-Bound Conformations and Interactions with Vasopressin and Oxytocin Receptors. Journal of Medicinal Chemistry, 2006, 49, 2463-2469.	6.4	31
15	Investigation ofcis/trans ratios of peptide bonds in AVP analogues containingN-methylphenylalanine enantiomers. Journal of Peptide Science, 2006, 12, 13-24.	1.4	7
16	Molecular dynamics simulation of human neurohypophyseal hormone receptors complexed with oxytocin—modeling of an activated state. Journal of Peptide Science, 2006, 12, 171-179.	1.4	27
17	Analysis of interactions responsible for vasopressin binding to human neurohypophyseal hormone receptors—molecular dynamics study of the activated receptor–vasopressin–Gα systems. Journal of Peptide Science, 2006, 12, 180-189.	1.4	33
18	Investigation of mechanism of desmopressin binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: Molecular dynamics simulation of the agonist-bound state in the membrane–aqueous system. Biopolymers, 2006, 81, 321-338.	2.4	24

#	Article	IF	CITATIONS
19	Conformational studies of vasopressin analogues modified with N-methylphenylalanine enantiomers in dimethyl sulfoxide solution. Biopolymers, 2006, 82, 603-614.	2.4	10
20	Molecular Modeling of the Neurohypophyseal Receptor/Atosiban Complexes. Protein and Peptide Letters, 2003, 10, 295-302.	0.9	15