Robert J Griffin-Nolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6898563/publications.pdf

Version: 2024-02-01

686830 794141 19 739 13 19 citations g-index h-index papers 22 22 22 1235 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Chronic and intense droughts differentially influence grassland carbon-nutrient dynamics along a natural aridity gradient. Plant and Soil, 2022, 473, 137-148.	1.8	10
2	Differential responses of grassland community nonstructural carbohydrate to experimental drought along a natural aridity gradient. Science of the Total Environment, 2022, 822, 153589.	3.9	14
3	Legacy effects of a multi-year extreme drought on belowground bud banks in rhizomatous vs bunchgrass-dominated grasslands. Oecologia, 2022, 198, 763-771.	0.9	11
4	Is a drought a drought in grasslands? Productivity responses to different types of drought. Oecologia, 2021, 197, 1017-1026.	0.9	34
5	Friend or foe? The role of biotic agents in drought-induced plant mortality. Plant Ecology, 2021, 222, 537-548.	0.7	7
6	Deconstructing precipitation variability: Rainfall event size and timing uniquely alter ecosystem dynamics. Journal of Ecology, 2021, 109, 3356-3369.	1.9	23
7	Plant traits and soil fertility mediate productivity losses under extreme drought in C ₃ grasslands. Ecology, 2021, 102, e03465.	1.5	35
8	Effects of Low-Level Artificial Light at Night on Kentucky Bluegrass and an Introduced Herbivore. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	8
9	Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22249-22255.	3.3	63
10	Shifts in plant functional composition following longâ€ŧerm drought in grasslands. Journal of Ecology, 2019, 107, 2133-2148.	1.9	85
11	Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 2019, 442, 343-353.	1.8	31
12	Extending the osmometer method for assessing drought tolerance in herbaceous species. Oecologia, 2019, 189, 353-363.	0.9	40
13	Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecology, 2018, 219, 505-515.	0.7	66
14	Drought timing, not previous drought exposure, determines sensitivity of two shortgrass species to water stress. Oecologia, 2018, 188, 965-975.	0.9	19
15	Green light drives photosynthesis in mosses. Journal of Bryology, 2018, 40, 342-349.	0.4	5
16	A reality check for climate change experiments: Do they reflect the real world?. Ecology, 2018, 99, 2145-2151.	1.5	48
17	Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Functional Ecology, 2018, 32, 1746-1756.	1.7	94
18	Host Plants of the Wheat Stem Sawfly (Hymenoptera: Cephidae). Environmental Entomology, 2017, 46, 847-854.	0.7	14

#	Article	IF	CITATIONS
19	Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 2017, 23, 1774-1782.	4.2	132