
Nicolas A Gillet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6898337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Susceptibility of neuroblastoma and glioblastoma cell lines to SARS-CoV-2 infection. Brain Research, 2021, 1758, 147344.	1.1	16
2	Infection of Bronchial Epithelial Cells by the Human Adenoviruses A12, B3, and C2 Differently Regulates the Innate Antiviral Effector APOBEC3B. Journal of Virology, 2021, 95, e0241320.	1.5	3
3	Control of APOBEC3B induction and cccDNA decay by NF-κB and miR-138-5p. JHEP Reports, 2021, 3, 100354.	2.6	11
4	Absence of SARS-CoV-2 in the effluent of peritoneal dialysis patients. Peritoneal Dialysis International, 2020, 40, 499-503.	1.1	14
5	SARS-CoV-2 Detection for Diagnosis Purposes in the Setting of a Molecular Biology Research Lab. Methods and Protocols, 2020, 3, 59.	0.9	11
6	Footprint of the host restriction factors APOBEC3 on the genome of human viruses. PLoS Pathogens, 2020, 16, e1008718.	2.1	56
7	Evolution of retrovirus-infected premalignant T-cell clones prior to adult T-cell leukemia/lymphoma diagnosis. Blood, 2020, 135, 2023-2032.	0.6	47
8	Footprint of the host restriction factors APOBEC3 on the genome of human viruses. , 2020, 16, e1008718.		0
9	Footprint of the host restriction factors APOBEC3 on the genome of human viruses. , 2020, 16, e1008718.		0
10	Footprint of the host restriction factors APOBEC3 on the genome of human viruses. , 2020, 16, e1008718.		0
11	Footprint of the host restriction factors APOBEC3 on the genome of human viruses. , 2020, 16, e1008718.		0
12	Long-term clinical remission maintained after cessation of zidovudine and interferon-α therapy in chronic adult T-cell leukemia/lymphoma. International Journal of Hematology, 2018, 107, 378-382.	0.7	12
13	High-Throughput Mapping and Clonal Quantification of Retroviral Integration Sites. Methods in Molecular Biology, 2017, 1582, 127-141.	0.4	9
14	Cis -drivers and trans -drivers of bovine leukemia virus oncogenesis. Current Opinion in Virology, 2017, 26, 15-19.	2.6	13
15	Bovine Leukemia Virus Small Noncoding RNAs Are Functional Elements That Regulate Replication and Contribute to Oncogenesis In Vivo. PLoS Pathogens, 2016, 12, e1005588.	2.1	48
16	Whole genome sequencing of 51 breast cancers reveals that tumors are devoid of bovine leukemia virus DNA. Retrovirology, 2016, 13, 75.	0.9	42
17	Modes of Human T Cell Leukemia Virus Type 1 Transmission, Replication and Persistence. Viruses, 2015, 7, 3603-3624.	1.5	37
18	APOBEC3 Interference during Replication of Viral Genomes. Viruses, 2015, 7, 2999-3018.	1.5	34

NICOLAS A GILLET

#	Article	IF	CITATIONS
19	Recent Advances in BLV Research. Viruses, 2015, 7, 6080-6088.	1.5	73
20	Mutation of a Single Envelope N-Linked Glycosylation Site Enhances the Pathogenicity of Bovine Leukemia Virus. Journal of Virology, 2015, 89, 8945-8956.	1.5	25
21	Quantification of HTLV-1 Clonality and TCR Diversity. PLoS Computational Biology, 2014, 10, e1003646.	1.5	71
22	Vaccination against δ-Retroviruses: The Bovine Leukemia Virus Paradigm. Viruses, 2014, 6, 2416-2427.	1.5	54
23	Strongyloidiasis and Infective Dermatitis Alter Human T Lymphotropic Virus-1 Clonality in vivo. PLoS Pathogens, 2013, 9, e1003263.	2.1	51
24	Massive Depletion of Bovine Leukemia Virus Proviral Clones Located in Genomic Transcriptionally Active Sites during Primary Infection. PLoS Pathogens, 2013, 9, e1003687.	2.1	78
25	Genome-wide Determinants of Proviral Targeting, Clonal Abundance and Expression in Natural HTLV-1 Infection. PLoS Pathogens, 2013, 9, e1003271.	2.1	92
26	WIP1 deficiency inhibits HTLV-1 Tax oncogenesis: novel therapeutic prospects for treatment of ATL?. Retrovirology, 2012, 9, 115.	0.9	5
27	Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics, 2012, 28, 755-762.	1.8	106
28	Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors. Pathogens, 2012, 1, 65-82.	1.2	7
29	The host genomic environment of the provirus determines the abundance of HTLV-1–infected T-cell clones. Blood, 2011, 117, 3113-3122.	0.6	273
30	Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood, 2011, 118, 6306-6309.	0.6	42
31	Human T-lymphotropic virus type 1(HTLV-1) integration, HTLV-1-associated infective dermatitis (IDH) and the risk of Adult T cell leukaemia/lymphoma (ATLL). Retrovirology, 2011, 8, .	0.9	Ο
32	Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV. Viruses, 2011, 3, 1210-1248.	1.5	155
33	HTLV-1 Propels Thymic Human T Cell Development in "Human Immune System―Rag2-/- gamma c-/- Mice. PLoS Pathogens, 2011, 7, e1002231.	2.1	61
34	Gene activation therapy from the BLV model to HAM TSP patients. Frontiers in Bioscience - Scholar, 2009, S1, 205-215.	0.8	12
35	Even Attenuated Bovine Leukemia Virus Proviruses Can Be Pathogenic in Sheep. Journal of Virology, 2007, 81, 10195-10200.	1.5	30
36	Histone deacetylase–mediated transcriptional activation reduces proviral loads in HTLV-1–associated myelopathy/tropical spastic paraparesis patients. Blood, 2007, 110, 3722-3728.	0.6	70

NICOLAS A GILLET

#	Article	IF	CITATIONS
37	Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology, 2007, 4, 18.	0.9	287
38	Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Experimental Hematology, 2007, 35, 1527-1537.	0.2	63
39	Cell dynamics and immune response to BLV infection: a unifying model. Frontiers in Bioscience - Landmark, 2007, 12, 1520.	3.0	57
40	Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1165-1171.	1.2	58
41	Peripheral Blood B-Cell Death Compensates for Excessive Proliferation in Lymphoid Tissues and Maintains Homeostasis in Bovine Leukemia Virus-InfectedSheep. Journal of Virology, 2006, 80, 9710-9719.	1.5	22
42	Spleen-Dependent Turnover of CD11b Peripheral Blood B Lymphocytes in Bovine Leukemia Virus-Infected Sheep. Journal of Virology, 2006, 80, 11998-12008.	1.5	16
43	Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10309-10314.	3.3	62