
Hao Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6898226/publications.pdf Version: 2024-02-01

HAO CU

#	Article	IF	CITATIONS
1	First-principles screening in Cu-embedded PtSe2 monolayer as a potential gas sensor upon CO and HCHO in dry-type transformers. Computational and Theoretical Chemistry, 2022, 1209, 113586.	1.1	6
2	Janus PtSSe monolayer: A novel strain-modulated buddy for SOF2 sensing. Vacuum, 2022, 198, 110887.	1.6	14
3	Adsorption of H ₂ and C ₂ H ₂ onto Rh-decorated InN monolayer and the effect of applied electric field. Molecular Physics, 2022, 120, .	0.8	3
4	Difluorobenzylamine Treatment of Organolead Halide Perovskite Boosts the High Efficiency and Stability of Photovoltaic Cells. ACS Applied Materials & Interfaces, 2022, 14, 11388-11397.	4.0	11
5	Adsorption Behavior of Pd-Doped PtSâ,, Monolayer Upon SFâ,† Decomposed Species and the Effect of Applied Electric Field. IEEE Sensors Journal, 2022, 22, 6764-6771.	2.4	22
6	Pd-doped PtSe2 monolayer with strain-modulated effect for sensing SF6 decomposed species: a first-principles study. Journal of Materials Research and Technology, 2022, 18, 629-636.	2.6	28
7	First-principles screening upon Janus PtXY (X, Y = S, Se and Te) monolayer under applied biaxial strains and electric fields. Journal of Materials Research and Technology, 2022, 18, 1218-1229.	2.6	5
8	First-principles investigation of Pt-doped MoTe2 for detecting characteristic air decomposition components in air insulation switchgear. Computational and Theoretical Chemistry, 2022, 1214, 113796.	1.1	10
9	Favorable sensing property of Pt-doped Janus HfSSe monolayer upon H2S and SO2: A first-principles theory. Journal of Materials Research and Technology, 2022, , .	2.6	3
10	Geometric, Electronic and Optical Properties of Pt-Doped C ₃ N Monolayer Upon NO _x Adsorption: A DFT Study. IEEE Sensors Journal, 2021, 21, 3602-3608.	2.4	43
11	Pd-doped C3N monolayer: A promising low-temperature and high-activity single-atom catalyst for CO oxidation. Applied Surface Science, 2021, 537, 147881.	3.1	42
12	Sensing behavior of Cu-embedded C3N monolayer upon dissolved gases in transformer oil: a first-principles study. Carbon Letters, 2021, 31, 489-496.	3.3	1
13	SOF ₂ sensing by Rh-doped PtS ₂ monolayer for early diagnosis of partial discharge in the SF ₆ insulation device. Molecular Physics, 2021, 119, e1919774.	0.8	106
14	Performance Improvement of MoSâ,, Gas Sensor at Room Temperature. IEEE Transactions on Electron Devices, 2021, 68, 4644-4650.	1.6	5
15	A Novel Regression Prediction Method for Electronic Nose Based on Broad Learning System. IEEE Sensors Journal, 2021, 21, 19374-19381.	2.4	6
16	Enhanced NOx adsorption and sensing properties of MoTe2 monolayer by Ni-doping: A first-principles study. Surfaces and Interfaces, 2021, 26, 101372.	1.5	21
17	Al-Doped MoSe ₂ Monolayer as a Promising Biosensor for Exhaled Breath Analysis: A DFT Study. ACS Omega, 2021, 6, 988-995.	1.6	54
18	InP ₃ Monolayer as a Promising 2D Sensing Material in SF ₆ Insulation Devices. ACS Omega, 2021, 6, 29752-29758.	1.6	3

ΗΑΟ Ϲυι

#	Article	IF	CITATIONS
19	Adsorption behaviour of SO ₂ and SOF ₂ gas on Rh-doped BNNT: a DFT study. Molecular Physics, 2020, 118, e1580394.	0.8	32
20	Thermal decomposition properties of fluoronitriles-N2 gas mixture as alternative gas for SF6. Journal of Fluorine Chemistry, 2020, 229, 109434.	0.9	8
21	Adsorption and sensing of SO2 and SOF2 molecule by Pt-doped HfSe2 monolayer: A first-principles study. Applied Surface Science, 2020, 530, 147242.	3.1	63
22	Rh-doped MoTe2 Monolayer as a Promising Candidate for Sensing and Scavenging SF6 Decomposed Species: a DFT Study. Nanoscale Research Letters, 2020, 15, 129.	3.1	46
23	Thermally Stable RuO <i>_x</i> –CeO ₂ Nanofiber Catalysts for Low-Temperature CO Oxidation. ACS Applied Nano Materials, 2020, 3, 8403-8413.	2.4	41
24	Doping effect of small Rhn (nÂ=Â1–4) clusters on the geometric and electronic behaviors of MoS2 monolayer: A first-principles study. Applied Surface Science, 2020, 526, 146659.	3.1	27
25	Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: A first-principles study. Applied Surface Science, 2020, 512, 145759.	3.1	236
26	Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: A first-principles study. Applied Surface Science, 2020, 513, 145863.	3.1	250
27	A DFT study of healing the N vacancy in h-BN monolayer by NO molecules. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	7
28	Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: A DFT study. Materials Chemistry and Physics, 2020, 249, 123006.	2.0	87
29	Corrections to "Ru-InN Monolayer as a Gas Scavenger to Guard the Operation Status of SF ₆ Insulation Devices: A First-Principles Theory―[Jul 19 5249-5255]. IEEE Sensors Journal, 2020, 20, 562-562.	2.4	4
30	A Classification for Electronic Nose Based on Broad Learning System. Frontiers in Artificial Intelligence and Applications, 2020, , .	0.3	0
31	Facile Fabrication of Au Nanoparticles/Tin Oxide/Reduced Graphene Oxide Ternary Nanocomposite and Its High-Performance SF6 Decomposition Components Sensing. Frontiers in Chemistry, 2019, 7, 476.	1.8	11
32	First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger. Applied Surface Science, 2019, 494, 859-866.	3.1	250
33	Rh-doped MoSe ₂ as a toxic gas scavenger: a first-principles study. Nanoscale Advances, 2019, 1, 772-780.	2.2	261
34	High selectivity n-type InSe monolayer toward decomposition products of sulfur hexafluoride: A density functional theory study. Applied Surface Science, 2019, 479, 852-862.	3.1	20
35	Adsorption characteristic of Rh-doped MoSe2 monolayer towards H2 and C2H2 for DGA in transformer oil based on DFT method. Applied Surface Science, 2019, 487, 930-937.	3.1	48
36	Repairing the N-vacancy in an InN monolayer using NO molecules: a first-principles study. Nanoscale Advances, 2019, 1, 2003-2008.	2.2	14

ΗΑΟ Ϲυι

#	Article	IF	CITATIONS
37	Ru-InN Monolayer as a Gas Scavenger to Guard the Operation Status of SF ₆ Insulation Devices: A First-Principles Theory. IEEE Sensors Journal, 2019, 19, 5249-5255.	2.4	158
38	Different doping of penta-graphene as adsorbent and gas sensing material for scavenging and detecting SF6 decomposed species. Sustainable Materials and Technologies, 2019, 21, e00100.	1.7	11
39	Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: A first-principles theory. Sustainable Materials and Technologies, 2019, 20, e00094.	1.7	99
40	Nanomaterialsâ€based gas sensors of SF ₆ decomposed species for evaluating the operation status of highâ€voltage insulation devices. High Voltage, 2019, 4, 242-258.	2.7	124
41	Density functional theory study of small Ag cluster adsorbed on graphyne. Applied Surface Science, 2019, 465, 93-102.	3.1	46
42	Mechanical behaviors and porosity of porous Ti prepared with large-size acicular urea as spacer. SN Applied Sciences, 2019, 1, 1.	1.5	3
43	Adsorption and desorption behavior of anion-exchange resin towards SO42â^' in the desulphurization process using citric method. Adsorption, 2019, 25, 105-113.	1.4	1
44	Pt & Pd decorated CNT as a workable media for SOF2 sensing: A DFT study. Applied Surface Science, 2019, 471, 335-341.	3.1	125
45	Pd-doped MoS2 monolayer: A promising candidate for DGA in transformer oil based on DFT method. Applied Surface Science, 2019, 470, 1035-1042.	3.1	248
46	Pristine and Cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study. Journal of Hazardous Materials, 2019, 363, 346-357.	6.5	146
47	Mechanical Behavior and Microstructure of Porous Ti Using TiC as Reinforcement. Minerals, Metals and Materials Series, 2019, , 495-501.	0.3	0
48	Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: A DFT study. Applied Surface Science, 2018, 447, 594-598.	3.1	110
49	Adsorption behaviour of SF ₆ decomposed species onto Pd ₄ -decorated single-walled CNT: a DFT study. Molecular Physics, 2018, 116, 1749-1755.	0.8	31
50	Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	105
51	Carbon-chain inserting effect on electronic behavior of single-walled carbon nanotubes: a density functional theory study. MRS Communications, 2018, 8, 189-193.	0.8	17
52	Electronic structure and H2S adsorption property of Pt3 cluster decorated (8, 0) SWCNT. Applied Surface Science, 2018, 428, 82-88.	3.1	30
53	Pt-doped single-walled CNT as a superior media for evaluating the operation status of insulation devices: A first-principle study. AIP Advances, 2018, 8, .	0.6	13
54	Determination of Gas Sensing Properties of SF <inf>6</inf> Decomposition Components by Pt Modified Graphene. , 2018, , .		0

ΗΑΟ Ουι

#	Article	IF	CITATIONS
55	Adsorption of SF ₆ Decomposed Products over ZnO(101ì0): Effects of O and Zn Vacancies. ACS Omega, 2018, 3, 18739-18752.	1.6	9
56	Interaction of CO and CH ₄ Adsorption with Noble Metal (Rh, Pd, and Pt)-Decorated N ₃ -CNTs: A First-Principles Study. ACS Omega, 2018, 3, 16892-16898.	1.6	16
57	Theoretical Study of Monolayer PtSe ₂ as Outstanding Gas Sensor to Detect SF ₆ Decompositions. IEEE Electron Device Letters, 2018, 39, 1405-1408.	2.2	67
58	Sulfur dioxide adsorbed on pristine and Au dimer decorated Î ³ -graphyne: A density functional theory study. Applied Surface Science, 2018, 458, 781-789.	3.1	25
59	Geometric structure and SOF2 adsorption behavior of Ptn (n=1-4) clustered (8, 0) single-walled CNT using density functional theory. Journal of Fluorine Chemistry, 2018, 211, 148-153.	0.9	25
60	Borophene: a promising adsorbent material with strong ability and capacity for SO2 adsorption. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	36
61	Adsorption mechanism of SF6 decomposition components onto N, F-co-doped TiO2: A DFT study. Journal of Fluorine Chemistry, 2018, 213, 18-23.	0.9	19
62	Pt Decorating Effect on CNT Surface Towards Adsorption of SF6 Decomposed Components. Minerals, Metals and Materials Series, 2018, , 921-928.	0.3	0
63	Adsorption characteristic of Pd-4 cluster carbon nanotube towards transformer oil dissolved components: A simulation. Applied Surface Science, 2017, 419, 802-810.	3.1	32
64	Adsorption performance of Rh decorated SWCNT upon SF 6 decomposed components based on DFT method. Applied Surface Science, 2017, 420, 825-832.	3.1	53
65	Understanding of SF 6 decompositions adsorbed on cobalt-doped SWCNT: A DFT study. Applied Surface Science, 2017, 420, 371-382.	3.1	32
66	A first principle simulation of competitive adsorption of SF6 decomposition components on nitrogen-doped anatase TiO2 (101) surface. Applied Surface Science, 2017, 422, 331-338.	3.1	42
67	Mechanism and Application of Carbon Nanotube Sensors in SF6 Decomposed Production Detection: a Review. Nanoscale Research Letters, 2017, 12, 177.	3.1	74
68	Synthesis of Graphene-Based Sensors and Application on Detecting SF6 Decomposing Products: A Review. Sensors, 2017, 17, 363.	2.1	38
69	A DFT Calculation of Fluoride-Doped TiO2 Nanotubes for Detecting SF6 Decomposition Components. Sensors, 2017, 17, 1907.	2.1	14
70	Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H2S and SO2. Sensors, 2016, 16, 1889.	2.1	18
71	Volume change of macropores of titanium foams during sintering. Transactions of Nonferrous Metals Society of China, 2015, 25, 3834-3839.	1.7	9