Petra Patakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6898133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Advances, 2022, 58, 107889.	6.0	6
2	Isolation and identification of <i>Pantoea agglomerans</i> from the inflated bag with dried hop pellets stored under a modified atmosphere. Journal of Applied Microbiology, 2021, 131, 281-287.	1.4	4
3	Phenotypic and genomic analysis of isopropanol and 1,3-propanediol producer Clostridium diolis DSM 15410. Genomics, 2021, 113, 1109-1119.	1.3	9
4	Identification and Validation of Reference Genes in Clostridium beijerinckii NRRL B-598 for RT-qPCR Using RNA-Seq Data. Frontiers in Microbiology, 2021, 12, 640054.	1.5	4
5	Effect of a Monascus sp. Red Yeast Rice Extract on Germination of Bacterial Spores. Frontiers in Microbiology, 2021, 12, 686100.	1.5	2
6	Diversity and Evolution of Clostridium beijerinckii and Complete Genome of the Type Strain DSM 791T. Processes, 2021, 9, 1196.	1.3	5
7	Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation. Applied Microbiology and Biotechnology, 2021, 105, 877-889.	1.7	3
8	Deeper below the surface—transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock. MicrobiologyOpen, 2021, 10, e1146.	1.2	5
9	Microbial community of hop (Humulus lupulus L.) and its impact on the quality of hop products. Acta Horticulturae, 2021, , 109-114.	0.1	Ο
10	Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production. Renewable Energy, 2020, 145, 1941-1948.	4.3	31
11	Phenotypic and Genomic Analysis of Clostridium beijerinckii NRRL B-598 Mutants With Increased Butanol Tolerance. Frontiers in Bioengineering and Biotechnology, 2020, 8, 598392.	2.0	6
12	Microbial production of butanol from food industry waste. , 2020, , 163-180.		1
13	Production of butyric acid at constant pH by a solventogenic strain of Clostridium beijerinckii. Czech Journal of Food Sciences, 2020, 38, 185-191.	0.6	9
14	Role of efflux in enhancing butanol tolerance of bacteria. Journal of Biotechnology, 2020, 320, 17-27.	1.9	15
15	Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. PLoS ONE, 2019, 14, e0224560.	1.1	19
16	Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or	1.5	39
17	A transcriptional response of Clostridium beijerinckii NRRL B-598 to a butanol shock. Biotechnology for Biofuels, 2019, 12, 243.	6.2	18
18	Effective continuous acetone–butanol–ethanol production with full utilization of cassava by immobilized symbiotic TSH06. Biotechnology for Biofuels, 2019, 12, 219.	6.2	10

Ρετγα Ρατακούα

#	Article	IF	CITATIONS
19	Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Scientific Reports, 2019, 9, 1371.	1.6	48
20	Transient and Steady Pervaporation of 1-Butanol–Water Mixtures through a Poly[1-(Trimethylsilyl)-1-Propyne] (PTMSP) Membrane. Polymers, 2019, 11, 1943.	2.0	11
21	Title is missing!. , 2019, 14, e0224560.		0
22	Title is missing!. , 2019, 14, e0224560.		0
23	Title is missing!. , 2019, 14, e0224560.		0
24	Title is missing!. , 2019, 14, e0224560.		0
25	Comparative analysis of high butanol tolerance and production in clostridia. Biotechnology Advances, 2018, 36, 721-738.	6.0	46
26	Use of wheat straw and chicken feather hydrolysates as a complete medium for lactic acid production. Czech Journal of Food Sciences, 2018, 36, 146-153.	0.6	11
27	Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. BMC Genomics, 2018, 19, 415.	1.2	17
28	Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnology for Biofuels, 2018, 11, 99.	6.2	29
29	Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. Journal of Biotechnology, 2017, 244, 1-3.	1.9	25
30	Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A. Applied Microbiology and Biotechnology, 2017, 101, 8279-8291.	1.7	12
31	Monascus Secondary Metabolites. , 2017, , 821-851.		6
32	Transformation of raw feather waste into digestible peptides and amino acids. Journal of Chemical Technology and Biotechnology, 2016, 91, 1629-1637.	1.6	50
33	Effect of sodium sulfite on acid pretreatment of wheat straw with respect to its final conversion to ethanol. Biomass and Bioenergy, 2016, 95, 1-7.	2.9	23
34	Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation. Biotechnology for Biofuels, 2016, 9, 14.	6.2	35
35	Butanol production by Clostridium pasteurianum NRRL B-598 in continuous culture compared to batch and fed-batch systems. Fuel Processing Technology, 2016, 144, 139-144.	3.7	43
36	Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiology Letters, 2016, 363, fnw031.	0.7	33

Ρετγα Ρατακούα

6

#	ARTICLE	IF	CITATIONS
37	Changes in Membrane Plasmalogens of Clostridium pasteurianum during Butanol Fermentation as Determined by Lipidomic Analysis. PLoS ONE, 2015, 10, e0122058.	1.1	30
38	Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells. Journal of Biotechnology, 2015, 216, 29-35.	1.9	32
39	Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. Journal of Biotechnology, 2015, 214, 113-114.	1.9	24
40	Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnology Advances, 2015, 33, 1091-1107.	6.0	151
41	Monascus Secondary Metabolites. , 2015, , 1-31.		0
42	Draft Genome Sequence of Clostridium pasteurianum NRRL B-598, a Potential Butanol or Hydrogen Producer. Genome Announcements, 2014, 2, .	0.8	11
43	Use of fluorescent staining and flow cytometry for monitoring physiological changes in solventogenic clostridia. Anaerobe, 2014, 29, 113-117.	1.0	13
44	High solid fed-batch SSF with delayed inoculation for improved production of bioethanol from wheat straw. Fuel, 2014, 122, 294-300.	3.4	37
45	Novel and neglected issues of acetone–butanol–ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnology Advances, 2013, 31, 58-67.	6.0	112
46	<i>Monascus</i> secondary metabolites: production and biological activity. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 169-181.	1.4	259
47	Optimization of alkali pretreatment of wheat straw to be used as substrate for biofuels production. Plant, Soil and Environment, 2013, 59, 537-542.	1.0	25
48	Rapid flow cytometric method for viability determination of solventogenic clostridia. Folia Microbiologica, 2012, 57, 307-311.	1.1	16
49	Evaluation of Rhodotorula growth on solid substrate via a linear mixed effects model. Czech Journal of Food Sciences, 2011, 29, 400-410.	0.6	1
50	Development of flow cytometry technique for detection of thinning of peptidoglycan layer as a result of solvent production by Clostridium pasteurianum. Folia Microbiologica, 2010, 55, 340-344.	1.1	19
51	Cellulose derived materials as potential feedstocks for microbial production of biofuels. Journal of Biotechnology, 2010, 150, 142-142.	1.9	0
52	Exploitation of food feedstock and waste for production of biobutanol. Czech Journal of Food Sciences, 2009, 27, 276-283.	0.6	30
53	Development of butanol production process using Clostridium fermentation. New Biotechnology, 2009, 25, S202.	2.4	0

Ρετγα Ρατακούα

#	Article	IF	CITATIONS
55	Biological activities of oligoketide pigments of Monascus purpureus. Food Additives and Contaminants, 1999, 16, 15-24.	2.0	114
56	Identification of volatile metabolites from rice fermented by the fungusMonascus purpureus (Ang-kak). Folia Microbiologica, 1998, 43, 407-410.	1.1	11
57	Secondary metabolites of the fungusMonascus: A review. Journal of Industrial Microbiology, 1996, 16, 163-170.	0.9	310
58	Long-chain fatty acids from Monascus purpureus. Phytochemistry, 1996, 43, 151-153.	1.4	40
59	Biological activity of polyketide pigments produced by the fungus <i>Monascus</i> . Journal of Applied Bacteriology, 1995, 79, 609-616.	1.1	116
60	Isolation of acetonitrile-utilizing bacteria. Folia Microbiologica, 1992, 37, 372-376.	1.1	4
61	Perspectives of Biobutanol Production and Use. , 0, , .		11
62	Production of 2nd Generation of Liquid Biofuels. , 0, , .		8
63	Comparison of Lactic Acid Production by L. casei in Batch, Fed-batch and Continuous Cultivation, Testing the use of Feather Hydrolysate as a Complex Nitrogen Source. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	9