
Melike Sevim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6897924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrasonics Sonochemistry, 2018, 40, 841-852.	8.2	138
2	Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Research, 2017, 10, 1627-1640.	10.4	77
3	MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 17995-18006.	7.1	73
4	Bimetallic PdM (MÂ=ÂFe, Ag, Au) alloy nanoparticles assembled on reduced graphene oxide as catalysts for direct borohydride fuel cells. Journal of Alloys and Compounds, 2017, 718, 204-214.	5.5	66
5	Enhanced photocatalytic NOx oxidation and storage under visible-light irradiation by anchoring Fe3O4 nanoparticles on mesoporous graphitic carbon nitride (mpg-C3N4). Applied Catalysis B: Environmental, 2019, 249, 126-137.	20.2	64
6	Photocatalytic Activity of Mesoporous Graphitic Carbon Nitride (mpg-C3N4) Towards Organic Chromophores Under UV and VIS Light Illumination. Topics in Catalysis, 2016, 59, 1305-1318.	2.8	58
7	Photocatalytically Active Graphitic Carbon Nitride as an Effective and Safe 2D Material for In Vitro and In Vivo Photodynamic Therapy. Small, 2020, 16, e1904619.	10.0	53
8	Bimetallic MPt (M: Co, Cu, Ni) alloy nanoparticles assembled on reduced graphene oxide as high performance cathode catalysts for rechargable lithium-oxygen batteries. Journal of Alloys and Compounds, 2016, 683, 231-240.	5.5	41
9	Facile Synthesis of Monodisperse Copper–Platinum Alloy Nanoparticles and Their Superb Catalysis in the Hydrolytic Dehydrogenation of Ammonia Borane and Hydrazine Borane. ChemCatChem, 2017, 9, 4185-4190.	3.7	41
10	Monodisperse CoFe 2 O 4 nanoparticles supported on Vulcan XC-72: High performance electrode materials for lithium-air and lithium-ion batteries. Journal of Power Sources, 2015, 288, 36-41.	7.8	40
11	Gold Nanoparticles and Reduced Graphene Oxideâ€Gold Nanoparticle Composite Materials as Covalent Drug Delivery Systems for Breast Cancer Treatment. ChemistrySelect, 2017, 2, 6663-6672.	1.5	39
12	Monodisperse MPd (M: Co, Ni, Cu) alloy nanoparticles supported on reduced graphene oxide as cathode catalysts for the lithium-air battery. International Journal of Hydrogen Energy, 2015, 40, 10876-10882.	7.1	34
13	Novel scorpion type phthalocyanine chemosensors for detection of selective-metal ion by inducing H- and J-aggregations in solution; synthesis, characterization and electrochemistry. Dyes and Pigments, 2014, 111, 190-201.	3.7	31
14	Mesoporous graphitic carbon nitride-supported binary MPt (M: Co, Ni, Cu) nanoalloys as electrocatalysts for borohydride oxidation and hydrogen evolution reaction. Catalysis Today, 2020, 357, 291-301.	4.4	26
15	Threeâ€Component Cascade Reaction in a Tube: In Situ Synthesis of Pd Nanoparticles Supported on mpgâ€C ₃ N ₄ , Dehydrogenation of Ammonia Borane and Hydrogenation of Nitroarenes. ChemistrySelect, 2017, 2, 6344-6349.	1.5	25
16	Strontium oxide modified mesoporous graphitic carbon nitride/titanium dioxide nanocomposites (SrO-mpg-CN/TiO2) as efficient heterojunction photocatalysts for the degradation of tetracycline in water. Advanced Powder Technology, 2021, 32, 2743-2757.	4.1	23
17	Monodisperse Pd nanoparticles assembled on reduced graphene oxide-Fe 3 O 4 nanocomposites asÂelectrocatalysts for borohydride fuel cells. International Journal of Hydrogen Energy, 2018, 43, 10686-10697.	7.1	21
18	PdNi alloy nanoparticles assembled on cobalt ferrite-carbon black composite as a fuel cell catalyst. International Journal of Hydrogen Energy, 2019, 44, 14193-14200.	7.1	16

MELIKE SEVIM

#	Article	IF	CITATIONS
19	The synthesis of SrTiO ₃ nanocubes and the analysis of nearly ideal diode application of Ni/SrTiO ₃ nanocubes/n-Si heterojunctions. Materials Research Express, 2018, 5, 015060.	1.6	14
20	Nickelâ [~] 'palladium alloy nanoparticles supported on reduced graphene oxide decorated with metallic aluminum nanoparticles (Al-rGO/NiPd): a multifunctional catalyst for the transfer hydrogenation of nitroarenes and olefins using water as a hydrogen source. Inorganic Chemistry Frontiers, 2021, 8, 2200-2212.	6.0	12
21	Monodisperse CuPt alloy nanoparticles assembled on reduced graphene oxide as catalysts in the transfer hydrogenation of various functional organic groups. Applied Organometallic Chemistry, 2019, 33, e4863.	3.5	11
22	Analysis on the temperature dependent electrical properties of Cr/Graphene oxide-Fe3O4 nanocomposites/n-Si heterojunction device. Diamond and Related Materials, 2020, 108, 107933.	3.9	11
23	A comparative study on the effect of monodisperse Au and Ag nanoparticles on the performance of organic photovoltaic devices. Optical Materials, 2021, 116, 111082.	3.6	10
24	Ketjen Black supported monodisperse nickel–platinum alloy nanoparticles for the efficient catalyst in the hydrolytic dehydrogenation of ammonia borane. Applied Organometallic Chemistry, 2021, 35, e6095.	3.5	8
25	Interface application of NiPt alloy nanoparticles decorated rGO nanocomposite to eliminate of contact problem between metal and inorganic/organic semiconductor. Journal of Alloys and Compounds, 2021, 867, 158802.	5.5	8
26	Synthesis of nickel nanoparticles-deposited strontium titanate nanocubes (Ni-STO) and heterojunction electrical applications over a wide temperature range. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115479.	3.5	8
27	Monodisperse NiPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride as a catalyst for the highly efficient chemoselective reduction of α,β-unsaturated ketone compounds. New Journal of Chemistry, 2020, 44, 13606-13612.	2.8	5
28	Magnetically recoverable nickel-palladium alloy nanocatalysts for direct C–H arylation reactions. Dalton Transactions, 2021, 50, 17515-17523.	3.3	5
29	Analysis of the temperature dependent electrical parameters of the heterojunction obtained with Au nanoparticles decorated perovskite strontium titanate nanocubes. Journal of Alloys and Compounds, 2022, 914, 165140.	5.5	5
30	Temperature dependent electronic transport properties of heterojunctions formed between perovskite SrTiO3 nanocubes and silicon. Journal of Materials Science: Materials in Electronics, 2020, 31, 20833-20846.	2.2	4
31	Chemoselective reduction of α,β-unsaturated carbonyl compounds in the presence of CuPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride as highly efficient catalyst. Journal of Organometallic Chemistry, 2022, 958, 122181.	1.8	3
32	Photodynamic Therapy: Photocatalytically Active Graphitic Carbon Nitride as an Effective and Safe 2D Material for In Vitro and In Vivo Photodynamic Therapy (Small 10/2020). Small, 2020, 16, 2070051.	10.0	2