## Doina Humelnicu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6897919/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Study on the SBA-15 Silica and ETS-10 Titanosilicate as Efficient Adsorbents for Cu(II) Removal from<br>Aqueous Solution. Water (Switzerland), 2022, 14, 857.                                                                                                                      | 1.2 | 9         |
| 2  | Aminopolycarboxylic Acids-Functionalized Chitosan-Based Composite Cryogels as Valuable Heavy<br>Metal lons Sorbents: Fixed-Bed Column Studies and Theoretical Analysis. Gels, 2022, 8, 221.                                                                                        | 2.1 | 14        |
| 3  | Evaluation of phosphate adsorption by porous strong base anion exchangers having hydroxyethyl substituents: kinetics, equilibrium, and thermodynamics. Environmental Science and Pollution Research, 2021, 28, 7105-7115.                                                          | 2.7 | 8         |
| 4  | Cross-Linked and Functionalized Acrylic Polymers: Efficient and Reusable Sorbents for Zn(II) Ions in Solution. Journal of Polymers and the Environment, 2021, 29, 2261-2281.                                                                                                       | 2.4 | 4         |
| 5  | Analysis of Copper(II), Cobalt(II) and Iron(III) Sorption in Binary and Ternary Systems by Chitosan-Based<br>Composite Sponges Obtained by Ice-Segregation Approach. Gels, 2021, 7, 103.                                                                                           | 2.1 | 11        |
| 6  | Designing smart triple-network cationic cryogels with outstanding efficiency and selectivity for deep cleaning of phosphate. Chemical Engineering Journal, 2021, 426, 131411.                                                                                                      | 6.6 | 26        |
| 7  | Sorption of Ce(III) by Silica SBA-15 and Titanosilicate ETS-10 from Aqueous Solution. Water (Switzerland), 2021, 13, 3263.                                                                                                                                                         | 1.2 | 9         |
| 8  | Experimental Studies on the Removal of Aluminium Ions from Synthetic Aqueous Solution by<br>Hydroxyapatites. Acta Chimica Slovenica, 2021, 68, 821-832.                                                                                                                            | 0.2 | 0         |
| 9  | Bioinspired elelctrospun hybrid nanofibers based on biomass templated within polymeric matrix for metal removal from wastewater. Polymer Bulletin, 2020, 77, 3207-3222.                                                                                                            | 1.7 | 3         |
| 10 | Removal of heavy metal ions from multi-component aqueous solutions by eco-friendly and low-cost composite sorbents with anisotropic pores. Journal of Hazardous Materials, 2020, 381, 120980.                                                                                      | 6.5 | 88        |
| 11 | Superadsorbents for Strontium and Cesium Removal Enriched in Amidoxime by a Homo-IPN Strategy<br>Connected with Porous Silica Texture. ACS Applied Materials & Interfaces, 2020, 12, 44622-44638.                                                                                  | 4.0 | 20        |
| 12 | Contribution of Cross-Linker and Silica Morphology on Cr(VI) Sorption Performances of Organic<br>Anion Exchangers Embedded into Silica Pores. Molecules, 2020, 25, 1249.                                                                                                           | 1.7 | 9         |
| 13 | A Comparative Study on Cu2+, Zn2+, Ni2+, Fe3+, and Cr3+ Metal Ions Removal from Industrial<br>Wastewaters by Chitosan-Based Composite Cryogels. Molecules, 2020, 25, 2664.                                                                                                         | 1.7 | 19        |
| 14 | Synthesis, characterization and theoretical investigations of new uranium (VI) and thorium (IV)<br>complexes with 1-furfurylaldehyde-derived Schiff bases as ligands. Journal of Saudi Chemical Society,<br>2020, 24, 451-460.                                                     | 2.4 | 2         |
| 15 | Development of chitosan-poly(ethyleneimine) based double network cryogels and their application as superadsorbents for phosphate. Carbohydrate Polymers, 2019, 210, 17-25.                                                                                                         | 5.1 | 67        |
| 16 | Adsorptive Performance of Soy Bran and Mustard Husk Towards Arsenic (V) Ions from Synthetic<br>Aqueous Solutions. Acta Chimica Slovenica, 2019, 66, 326-336.                                                                                                                       | 0.2 | 4         |
| 17 | Design of porous strong base anion exchangers bearing N,N-dialkyl 2-hydroxyethyl ammonium groups<br>with enhanced retention of Cr(VI) ions from aqueous solution. Reactive and Functional Polymers,<br>2018, 124, 55-63.                                                           | 2.0 | 33        |
| 18 | Kinetics, equilibrium modeling, and thermodynamics on removal of Cr(VI) ions from aqueous solution<br>using novel composites with strong base anion exchanger microspheres embedded into<br>chitosan/poly(vinyl amine) cryogels. Chemical Engineering Journal, 2017, 330, 675-691. | 6.6 | 82        |

DOINA HUMELNICU

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Immobilised Co(II) Homodinuclear Coordinative Compound with Terephthalate and o-phenanthroline<br>as Ligands: Synthesis, Crystal Structure and Applications. Croatica Chemica Acta, 2017, 90, .            | 0.1 | Ο         |
| 20 | Agricultural by-products as low-cost sorbents for the removal of heavy metals from dilute wastewaters. Environmental Monitoring and Assessment, 2015, 187, 222.                                            | 1.3 | 10        |
| 21 | Evaluation of Adsorption Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+, Cu2+<br>and Zn2+. Acta Chimica Slovenica, 2015, 62, 947-957.                                                    | 0.2 | 4         |
| 22 | Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid. Journal of Nuclear Materials, 2014, 453,<br>75-81.                                                                                          | 1.3 | 3         |
| 23 | Removal of uranium(VI) and thorium(IV) ions from aqueous solutions by functionalized silica: kinetic<br>and thermodynamic studies. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 1183-1190. | 0.7 | 33        |
| 24 | Removal of uranium (VI) from aqueous systems by nanoscale zero-valent iron particles suspended in<br>carboxy-methyl cellulose. Journal of Nuclear Materials, 2013, 443, 250-255.                           | 1.3 | 54        |
| 25 | Uptake of uranyl ions from uranium ores and sludges by means of Spirulina platensis, Porphyridium cruentum and Nostok linckia alga. Bioresource Technology, 2012, 118, 19-23.                              | 4.8 | 50        |
| 26 | Magnetic chitosan composite particles: Evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydrate Polymers, 2012, 87, 1185-1191.                                                 | 5.1 | 131       |
| 27 | Removal of uranyl ions from UO2(NO3)2 solution by means of Chlorella vulgaris and Dunaliella salina algae. Open Chemistry, 2012, 10, 1669-1675.                                                            | 1.0 | 4         |
| 28 | New complexes of lanthanide Ln(III), (Ln=La, Sm, Gd, Er) with Schiff bases derived from 2-furaldehyde and phenylenediamines. Polyhedron, 2011, 30, 2127-2131.                                              | 1.0 | 26        |
| 29 | Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. Journal of Hazardous Materials, 2011, 185, 447-455.                          | 6.5 | 134       |
| 30 | On the retention of uranyl and thorium ions from radioactive solution on peat moss. Journal of<br>Hazardous Materials, 2010, 174, 782-787.                                                                 | 6.5 | 37        |
| 31 | Study on the retention of uranyl ions on modified clays with titanium oxide. Journal of<br>Radioanalytical and Nuclear Chemistry, 2009, 279, 131-136.                                                      | 0.7 | 49        |
| 32 | A Fluorescence Emission, FT-IR and UV-VIS Absorption Study of the Some Uranium (VI) Schiff Bases<br>Complexes. Journal of Fluorescence, 2008, 18, 707-713.                                                 | 1.3 | 13        |
| 33 | 226Ra translocation from soil to selected vegetation in the Crucea (Romania) uranium mining area.<br>Journal of Radioanalytical and Nuclear Chemistry, 2008, 278, 211-213.                                 | 0.7 | 4         |
| 34 | Comparison of various sensitive and selective spectrophotometric assays of environmental cyanide.<br>Toxicological and Environmental Chemistry, 2008, 90, 221-235.                                         | 0.6 | 7         |
| 35 | RECOVERY OF SOME INORGANIC COMPOUNDS FROM THE SLUDGES RESULTED AFTER THE LEACHING OF URANYL IONS FROM URANIUM ORES. Environmental Engineering and Management Journal, 2008, 7, 401-407.                    | 0.2 | 0         |
| 36 | Removal of uranyl ions from wastewaters using cellulose and modified cellulose materials .<br>Journal of Radioanalytical and Nuclear Chemistry, 2006, 268, 305-311.                                        | 0.7 | 14        |

DOINA HUMELNICU

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. Journal of<br>Radioanalytical and Nuclear Chemistry, 2006, 270, 637-640. | 0.7 | 69        |
| 38 | Laboratory analyses of60Co2+,65Zn2+and55+59Fe3+radiocations uptake byLemna minor. Isotopes in Environmental and Health Studies, 2006, 42, 87-95.                     | 0.5 | 18        |
| 39 | Bioaccumulation of thorium and uranyl ions on Saccharomyces cerevisiae. Journal of Radioanalytical and Nuclear Chemistry, 2004, 260, 291-293.                        | 0.7 | 24        |
| 40 | Removal of 60Co2+ and 137Cs+ ions from low radioactive solutions using Azolla caroliniana willd.<br>water fern. Open Chemistry, 2004, 2, 434-445.                    | 1.0 | 4         |
| 41 | Behaviour of the poly(maleic anhydride-co-vinyl acetate) copolymer in aqueous solutions. European<br>Polymer Journal, 2001, 37, 729-735.                             | 2.6 | 23        |
| 42 | Bioleaching of UO22+ Ions from Poor Uranium Ores by Means of Cyanobacteria. Journal of<br>Radioanalytical and Nuclear Chemistry, 2000, 245, 427-429.                 | 0.7 | 13        |
| 43 | Removal of uranyl ions from residual waters using some algae types. European Physical Journal D, 1999, 49, 987-990.                                                  | 0.4 | 2         |
| 44 | Bioakkumulation von UO22+- und Th4+-Ionen aus AbwÃ <b>s</b> sern. Isotopes in Environmental and Health<br>Studies, 1997, 33, 327-331.                                | 0.5 | 8         |
| 45 | Recuperation of uranyl ions from effluents by means of microbiological collectors. Waste<br>Management, 1997, 17, 97-99.                                             | 3.7 | 7         |
| 46 | Removal of chromium (III) ions from aqueous solutions using different types of hydroxyapatites. , 0, 204, 297-305.                                                   |     | 2         |