Jinkai Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6897893/publications.pdf Version: 2024-02-01

INKAL CHEN

#	Article	IF	CITATIONS
1	Triboelectric nanogenerator-enabled fully self-powered instantaneous wireless sensor systems. Nano Energy, 2022, 92, 106770.	8.2	21
2	Fully self-powered instantaneous wireless liquid level sensor system based on triboelectric nanogenerator. Nano Research, 2022, 15, 5425-5434.	5.8	12
3	High temperature effects on surface acoustic wave strain sensor. Sensors and Actuators A: Physical, 2022, 338, 113464.	2.0	4
4	Electric-Field-Resonance-Based Wireless Triboelectric Nanogenerators and Sensors. ACS Applied Materials & Interfaces, 2022, 14, 794-804.	4.0	18
5	Automatic Classification of Normal–Abnormal Heart Sounds Using Convolution Neural Network and Long-Short Term Memory. Electronics (Switzerland), 2022, 11, 1246.	1.8	10
6	Surface Acoustic Wave Strain Sensor With Ultra-Thin Langasite. IEEE Sensors Journal, 2022, 22, 11509-11516.	2.4	5
7	High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy, 2021, 80, 105599.	8.2	142
8	Predicting the fluid behavior of random microfluidic mixers using convolutional neural networks. Lab on A Chip, 2021, 21, 296-309.	3.1	20
9	A langasite surface acoustic wave wide-range temperature sensor with excellent linearity and high sensitivity. AIP Advances, 2021, 11, .	0.6	12
10	Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator. Nano Energy, 2021, 83, 105814.	8.2	49
11	New composite electrode for high temperature surface acoustic wave device. Materials Letters, 2021, 294, 129768.	1.3	2
12	Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling. Nano Energy, 2021, 89, 106429.	8.2	23
13	Surface electrical properties modulation by multimode polarizations inside hybrid perovskite films investigated through contact electrification effect. Nano Energy, 2021, 89, 106318.	8.2	4
14	Self-powered pumping switched TENG enabled real-time wireless metal tin height and position recognition and counting for production line management. Nano Energy, 2021, 90, 106544.	8.2	14
15	Analytical Study of the Film Bulk Acoustic Resonators Based on Single Crystal LiNbO3 with Different Crystal Orientations. Integrated Ferroelectrics, 2021, 213, 182-193.	0.3	2
16	Comparison of sputtering and atomic layer deposition based ultra-thin alumina protective layers for high temperature surface acoustic wave devices. Journal of Materials Research and Technology, 2021, 15, 4714-4724.	2.6	9
17	Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nature Communications, 2020, 11, 58.	5.8	114
18	Universal Triboelectric Nanogenerator Simulation Based on Dynamic Finite Element Method Model. Sensors, 2020, 20, 4838.	2.1	9

Jinkai Chen

#	Article	IF	CITATIONS
19	Mode Analysis of Pt/LGS Surface Acoustic Wave Devices. Sensors, 2020, 20, 7111.	2.1	5
20	Controlling Performance of Organic–Inorganic Hybrid Perovskite Triboelectric Nanogenerators via Chemical Composition Modulation and Electric Fieldâ€Induced Ion Migration. Advanced Energy Materials, 2020, 10, 2002470.	10.2	19
21	Bulk acoustic wave resonator based wireless and passive pressure sensor. Vacuum, 2020, 178, 109433.	1.6	8
22	Enhanced performance triboelectric nanogenerators based on solid polymer electrolytes with different concentrations of cations. Nano Energy, 2019, 64, 103960.	8.2	59
23	Triboelectric Nanogenerator-Based Self-Powered Resonant Sensor for Non-Destructive Defect Detection. Sensors, 2019, 19, 3262.	2.1	10
24	Waist-wearable wireless respiration sensor based on triboelectric effect. Nano Energy, 2019, 59, 75-83.	8.2	117
25	Significantly Enhanced Performance of Triboelectric Nanogenerator by Incorporating BaTiO ₃ Nanoparticles in Poly(vinylidene fluoride) Film. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900068.	0.8	35
26	Ultra-thin atom layer deposited alumina film enables the precise lifetime control of fully biodegradable electronic devices. Nanoscale, 2019, 11, 22369-22377.	2.8	7
27	Carbon electrodes enable flat surface PDMS and PA6 triboelectric nanogenerators to achieve significantly enhanced triboelectric performance. Nano Energy, 2019, 55, 548-557.	8.2	85
28	A general optimization approach for contact-separation triboelectric nanogenerator. Nano Energy, 2019, 56, 700-707.	8.2	70
29	Flexible dual-mode surface acoustic wave strain sensor based on crystalline LiNbO ₃ thin film. Journal of Micromechanics and Microengineering, 2019, 29, 025003.	1.5	17
30	Realizing the potential of polyethylene oxide as new positive tribo-material: Over 40â€W/m2 high power flat surface triboelectric nanogenerators. Nano Energy, 2018, 46, 63-72.	8.2	84
31	Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2018, 10, 5880-5891.	4.0	137
32	Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy, 2018, 45, 193-202.	8.2	226
33	A self-powered radio frequency (RF) transmission system based on the combination of triboelectric nanogenerator (TENG) and piezoelectric element for disaster rescue/relief. Nano Energy, 2018, 54, 331-340.	8.2	23
34	A self-power-transmission and non-contact-reception keyboard based on a novel resonant triboelectric nanogenerator (R-TENG). Nano Energy, 2018, 50, 16-24.	8.2	44
35	Triboelectric effect based instantaneous self-powered wireless sensing with self-determined identity. Nano Energy, 2018, 51, 1-9.	8.2	56
36	Self-powered transparent glass-based single electrode triboelectric motion tracking sensor array. Nano Energy, 2017, 34, 442-448.	8.2	40

Jinkai Chen

#	Article	IF	CITATIONS
37	Significant triboelectric enhancement using interfacial piezoelectric ZnO nanosheet layer. Nano Energy, 2017, 40, 471-480.	8.2	39
38	AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance. Journal of Micromechanics and Microengineering, 2016, 26, 075006.	1.5	29
39	Flexible surface acoustic wave broadband strain sensors based on ultra-thin flexible glass substrate. MRS Advances, 2016, 1, 1519-1524.	0.5	2
40	Rapid Determination of Phenylalanine by Micro-chip Based Field Asymmetric Waveform Ion Mobility Spectrometry Technology. Chinese Journal of Analytical Chemistry, 2016, 44, 617-624.	0.9	3
41	Transparent triboelectric generators based on glass and polydimethylsiloxane. Nano Energy, 2016, 30, 235-241.	8.2	47
42	High performance triboelectric nanogenerators based on phase-inversion piezoelectric membranes of poly(vinylidene fluoride)-zinc stannate (PVDF-ZnSnO3) and polyamide-6 (PA6). Nano Energy, 2016, 30, 470-480.	8.2	134
43	Flexible and Transparent Surface Acoustic Wave Microsensors and Microfluidics. Procedia Engineering, 2015, 120, 717-720.	1.2	8
44	Development of flexible ZnO thin film surface acoustic wave strain sensors on ultrathin glass substrates. Journal of Micromechanics and Microengineering, 2015, 25, 115005.	1.5	21
45	Flexible Surface Acoustic Wave Humidity Sensor with on Chip Temperature Compensation. Procedia Engineering, 2015, 120, 364-367.	1.2	11
46	High sensitivity flexible Lamb-wave humidity sensors with a graphene oxide sensing layer. Nanoscale, 2015, 7, 7430-7436.	2.8	95
47	Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors. Chinese Physics B, 2015, 24, 057701.	0.7	13
48	Comparative Study on Microfluidic Performance of ZnO Surface Acoustic Wave Devices on Various Substrates. Journal of the Electrochemical Society, 2014, 161, B230-B236.	1.3	19
49	Bendable ZnO thin film surface acoustic wave devices on polyethylene terephthalate substrate. Applied Physics Letters, 2014, 104, .	1.5	31
50	Thermal annealing effect on ZnO surface acoustic wave-based ultraviolet light sensors on glass substrates. Applied Physics Letters, 2014, 104, .	1.5	29
51	Bendable transparent ZnO thin film surface acoustic wave strain sensors on ultra-thin flexible glass substrates. Journal of Materials Chemistry C, 2014, 2, 9109-9114.	2.7	44
52	Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer. Scientific Reports, 2014, 4, 7206.	1.6	149