Pei Dong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6897182/pei-dong-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61
papers

2,442
citations

48
g-index

67
ext. papers

2,172
ext. citations

10.9
avg, IF

L-index

#	Paper	IF	Citations
61	Liquid metal-tailored gluten network for protein-based e-skin <i>Nature Communications</i> , 2022 , 13, 1206	17.4	7
60	Sustainable Generator and in-situ Monitor for Reactive Oxygen Species using Photodynamic Effect of Single-walled Carbon Nanotubes in Ionic Liquids. <i>Materials Today Sustainability</i> , 2022 , 100171	5	0
59	Pt Edge-Doped MoS: Activating the Active Sites for Maximized Hydrogen Evolution Reaction Performance. <i>Small</i> , 2021 , 17, e2104245	11	2
58	A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase. <i>Advanced Energy Materials</i> , 2021 , 11, 2100046	21.8	106
57	Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson's ratio. <i>Nature Communications</i> , 2021 , 12, 4092	17.4	10
56	Zn2+-Intercalated V2O5[hH2O derived from V2CTx MXene for hyper-stable zinc-ion storage. Journal of Materials Chemistry A, 2021 , 9, 17994-18005	13	10
55	Direct conversion of natural gases in solid oxide cells: A mini-review. <i>Electrochemistry Communications</i> , 2021 , 128, 107068	5.1	2
54	Hierarchically porous polyimide/TiCT film with stable electromagnetic interference shielding after resisting harsh conditions. <i>Science Advances</i> , 2021 , 7, eabj1663	14.3	25
53	Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. <i>Coordination Chemistry Reviews</i> , 2020 , 420, 213408	23.2	26
52	Vortex generation in a finitely extensible nonlinear elastic Peterlin fluid initially at rest. <i>Engineering Reports</i> , 2020 , 2, e12135	1.2	3
51	Etching-Doping Sedimentation Equilibrium Strategy: Accelerating Kinetics on Hollow Rh-Doped CoFe-Layered Double Hydroxides for Water Splitting. <i>Advanced Functional Materials</i> , 2020 , 30, 2003556	15.6	64
50	FIB-Patterned Nano-Supercapacitors: Minimized Size with Ultrahigh Performances. <i>Advanced Materials</i> , 2020 , 32, e1908072	24	11
49	MetalBrganic framework-derived ZnMoO4 nanosheet arrays for advanced asymmetric supercapacitors. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 3631-3641	2.1	3
48	Engineering Abundant Edge Sites of Bismuth Nanosheets toward Superior Ambient Electrocatalytic Nitrogen Reduction via Topotactic Transformation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2735-2741	8.3	21
47	Precursor-Transformation Strategy Preparation of CuP Nanodots-Decorated CoP Nanowires Hybrid Catalysts for Boosting pH-Universal Electrocatalytic Hydrogen Evolution. <i>Small</i> , 2019 , 15, e1904681	11	19
46	Revisiting the Role of Active Sites for Hydrogen Evolution Reaction through Precise Defect Adjusting. <i>Advanced Functional Materials</i> , 2019 , 29, 1901290	15.6	37
45	Ultrathin MoS2 Nanosheets Decorated Hollow CoP Heterostructures for Enhanced Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10105-10111	8.3	27

(2017-2019)

44	Oxygen Vacancies in Ta2O5 Nanorods for Highly Efficient Electrocatalytic N2 Reduction to NH3 under Ambient Conditions. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 9622-9628	8.3	36
43	Amorphous Sn/Crystalline SnS Nanosheets via In Situ Electrochemical Reduction Methodology for Highly Efficient Ambient N Fixation. <i>Small</i> , 2019 , 15, e1902535	11	55
42	Interfacial Engineering for High-Efficiency Nanorod Array-Structured Perovskite Solar Cells. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 33770-33780	9.5	41
41	Sublimation-Vapor Phase Pseudomorphic Transformation of Template-Directed MOFs for Efficient Oxygen Evolution Reaction. <i>Advanced Functional Materials</i> , 2019 , 29, 1903875	15.6	28
40	Nesting CoMo Binary Alloy Nanoparticles onto Molybdenum Oxide Nanosheet Arrays for Superior Hydrogen Evolution Reaction. <i>ACS Applied Materials & Description Action Section S</i>	9.5	38
39	Carbon-based perovskite solar cells: From single-junction to modules 2019 , 1, 109-123		33
38	An in situ electrochemical oxidation strategy for formation of nanogrid-shaped V3O7IH2O with enhanced zinc storage properties. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25262-25267	13	38
37	Graphene-Modified Tin Dioxide for Efficient Planar Perovskite Solar Cells with Enhanced Electron Extraction and Reduced Hysteresis. <i>ACS Applied Materials & Discrete Materials &</i>	9.5	46
36	Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701507	4.6	49
35	Large-scale controlled synthesis of porous two-dimensional nanosheets for the hydrogen evolution reaction through a chemical pathway. <i>Nanoscale</i> , 2018 , 10, 6168-6176	7.7	20
34	Dual-Functional Starfish-like P-Doped Co-Ni-S Nanosheets Supported on Nickel Foams with Enhanced Electrochemical Performance and Excellent Stability for Overall Water Splitting. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 7087-7095	9.5	76
33	Transforming Nickel Hydroxide into 3D Prussian Blue Analogue Array to Obtain Ni2P/Fe2P for Efficient Hydrogen Evolution Reaction. <i>Advanced Energy Materials</i> , 2018 , 8, 1800484	21.8	150
32	Recent developments of transition metal phosphides as catalysts in the energy conversion field. Journal of Materials Chemistry A, 2018, 6, 23220-23243	13	135
31	Urchin-like CoP with Controlled Manganese Doping toward Efficient Hydrogen Evolution Reaction in Both Acid and Alkaline Solution. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15162-15169	8.3	20
30	Template-free solvothermal preparation of ternary FeNi2S4 hollow balloons as RuO2-like efficient electrocatalysts for the oxygen evolution reaction with superior stability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19417-19424	13	16
29	A general strategy for the functionalization of two-dimensional metal chalcogenides. <i>Nanoscale</i> , 2018 , 10, 10657-10663	7.7	8
28	Surface Tension Components Ratio: An Efficient Parameter for Direct Liquid Phase Exfoliation. <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> . <i>ACS Applied Materials & Direct Liquid Phase Exfoliation</i> .	9.5	33
27	Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent. <i>Nano Research</i> , 2017 , 10, 2405-2414	10	7

26	Simultaneous Preparation and Functionalization of 2D Materials Assisted by Amphiphilic MoS2 Nanosheets. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600847	4.6	7
25	Controlled synthesis of Mo-doped Ni3S2 nano-rods: an efficient and stable electro-catalyst for water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1595-1602	13	108
24	Anion-exchange engineering of cookie-like BiS/BiMoO heterostructure for enhanced photocatalytic activities and gas-sensing properties. <i>Talanta</i> , 2017 , 165, 44-51	6.2	28
23	Controlled Electrodeposition Synthesis of Co-Ni-P Film as a Flexible and Inexpensive Electrode for Efficient Overall Water Splitting. <i>ACS Applied Materials & Discrete Splitting</i> . ACS Applied Materials & Discrete Splitting. Discrete Splitting S	9.5	72
22	Integrated Energy Aerogel of N,S-rGO/WSe/NiFe-LDH for Both Energy Conversion and Storage. <i>ACS Applied Materials & District Applied & Distr</i>	9.5	50
21	Cobalt-Doped FeSe2-RGO as Highly Active and Stable Electrocatalysts for Hydrogen Evolution Reactions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 18036-42	9.5	73
20	Construction of three-dimensional CuCo2S4/CNT/graphene nanocomposite for high performance supercapacitors. <i>RSC Advances</i> , 2016 , 6, 13456-13460	3.7	45
19	Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. <i>Nature Nanotechnology</i> , 2016 , 11, 465-71	28.7	150
18	Large-scale synthesis of few-layer graphene from magnesium and different carbon sources and its application in dye-sensitized solar cells. <i>Materials and Design</i> , 2016 , 92, 462-470	8.1	16
17	Solid-Liquid Self-Adaptive Polymeric Composite. ACS Applied Materials & amp; Interfaces, 2016, 8, 2142-	7 9.5	5
16	Magnetic Core-Shell to Yolk-Shell Structures in Palladium-Catalyzed Suzuki-Miyaura Reactions: Heterogeneous versus Homogeneous Nature. <i>ChemPlusChem</i> , 2016 , 81, 564-573	2.8	18
15	Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. <i>Small</i> , 2016 , 12, 2741-9	11	93
14	Interphase Induced Dynamic Self-Stiffening in Graphene-Based Polydimethylsiloxane Nanocomposites. <i>Small</i> , 2016 , 12, 3723-31	11	28
13	Straightforward synthesis of hierarchical Co3O4@CoWO4/rGO coreEhell arrays on Ni as hybrid electrodes for asymmetric supercapacitors. <i>Ceramics International</i> , 2016 , 42, 10719-10725	5.1	45
12	Layer-by-layer self-assembly of polyelectrolyte functionalized MoS2 nanosheets. <i>Nanoscale</i> , 2016 , 8, 9641-7	7.7	24
11	Novel FeNi2S4/TMD-based ternary composites for supercapacitor applications. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8844-8850	13	32
10	Insight into In Situ Amphiphilic Functionalization of Few-Layered Transition Metal Dichalcogenide Nanosheets. <i>Advanced Materials</i> , 2016 , 28, 8469-8476	24	10
9	Unveil the Size-Dependent Mechanical Behaviors of Individual CNT/SiC Composite Nanofibers by In Situ Tensile Tests in SEM. <i>Small</i> , 2016 , 12, 4486-91	11	15

LIST OF PUBLICATIONS

8	Scalable Transfer of Suspended Two-Dimensional Single Crystals. <i>Nano Letters</i> , 2015 , 15, 5089-97	11.5	33
7	Microstructure and properties of carbon nanosheet/copper composites processed by particle-assisted shear exfoliation. <i>RSC Advances</i> , 2015 , 5, 19321-19328	3.7	20
6	Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20902-20907	13	41
5	Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2014 , 118, 25863-25868	3.8	32
4	Recent advances in alternative cathode materials for iodine-free dye-sensitized solar cells. <i>Energy and Environmental Science</i> , 2013 , 6, 2003	35.4	124
3	High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles. <i>Scientific Reports</i> , 2012 , 2, 368	4.9	81
2	Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells. <i>ACS Applied Materials & District Research</i> , 2011, 3, 3157-61	9.5	82
1	Monolithic Ni-Mo-B Bifunctional Electrode for Large Current Water Splitting. <i>Advanced Functional Materials</i> ,2107308	15.6	5