
Richard F Keep

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/689699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron-Induced Hydrocephalus: the Role of Choroid Plexus Stromal Macrophages. Translational Stroke Research, 2023, 14, 238-249.	2.3	3
2	Glymphatic system and post-hemorrhagic hydrocephalus. Brain Hemorrhages, 2023, 4, 44-46.	0.4	1
3	The Fate of Erythrocytes after Cerebral Hemorrhage. Translational Stroke Research, 2022, 13, 655-664.	2.3	16
4	A timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage. CNS Neuroscience and Therapeutics, 2022, 28, 842-850.	1.9	7
5	Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine, 2022, 76, 103880.	2.7	39
6	Delayed Minocycline Treatment Ameliorates Hydrocephalus Development and Choroid Plexus Inflammation in Spontaneously Hypertensive Rats. International Journal of Molecular Sciences, 2022, 23, 2306.	1.8	4
7	Too big, too small: selecting hematoma sizes for inclusion in intracerebral hemorrhage-deferoxamine trials. Translational Stroke Research, 2022, , 1.	2.3	1
8	Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids and Barriers of the CNS, 2022, 19, 26.	2.4	47
9	Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review. Fluids and Barriers of the CNS, 2022, 19, 28.	2.4	25
10	Cerebral Cavernous Malformation Pathogenesis: Investigating Lesion Formation and Progression with Animal Models. International Journal of Molecular Sciences, 2022, 23, 5000.	1.8	4
11	Molecular Mechanisms of Cerebrovascular Diseases. International Journal of Molecular Sciences, 2022, 23, 7161.	1.8	1
12	Intra-hematomal White Matter Tracts Act As a Scaffold for Macrophage Infiltration After Intracerebral Hemorrhage. Translational Stroke Research, 2021, 12, 858-865.	2.3	12
13	Cerebrospinal Fluid from Aneurysmal Subarachnoid Hemorrhage Patients Leads to Hydrocephalus in Nude Mice. Neurocritical Care, 2021, 34, 423-431.	1.2	5
14	The Role of Thrombin in Brain Injury After Hemorrhagic and Ischemic Stroke. Translational Stroke Research, 2021, 12, 496-511.	2.3	46
15	Role of lipocalin-2 in extracellular peroxiredoxin 2-induced brain swelling, inflammation and neuronal death. Experimental Neurology, 2021, 335, 113521.	2.0	15
16	Ultra-Early Cerebral Thrombosis Formation After Experimental Subarachnoid Hemorrhage Detected on T2* Magnetic Resonance Imaging. Stroke, 2021, 52, 1033-1042.	1.0	16
17	Hydrocephalus Induced by Intraventricular Peroxiredoxin-2: The Role of Macrophages in the Choroid Plexus. Biomolecules, 2021, 11, 654.	1.8	11
18	Hydrocephalus Following Experimental Subarachnoid Hemorrhage in Rats with Different Aerobic Capacity. International Journal of Molecular Sciences, 2021, 22, 4489.	1.8	3

#	Article	IF	CITATIONS
19	Brain Barriers and brain fluids research in 2020 and the fluids and barriers of the CNS thematic series on advances in in vitro modeling of the blood–brain barrier and neurovascular unit. Fluids and Barriers of the CNS, 2021, 18, 24.	2.4	7
20	Acute micro-thrombosis after subarachnoid hemorrhage: A new therapeutic target?. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2470-2472.	2.4	10
21	The role of complement in brain injury following intracerebral hemorrhage: A review. Experimental Neurology, 2021, 340, 113654.	2.0	21
22	Assessing early erythrolysis and the relationship to perihematomal iron overload and white matter survival in human intracerebral hemorrhage. CNS Neuroscience and Therapeutics, 2021, 27, 1118-1126.	1.9	11
23	White Matter Survival within and around the Hematoma: Quantification by MRI in Patients with Intracerebral Hemorrhage. Biomolecules, 2021, 11, 910.	1.8	5
24	Acute T2*-Weighted Magnetic Resonance Imaging Detectable Cerebral Thrombosis in a Rat Model of Subarachnoid Hemorrhage. Translational Stroke Research, 2021, , 1.	2.3	7
25	CD47 blocking antibody accelerates hematoma clearance and alleviates hydrocephalus after experimental intraventricular hemorrhage. Neurobiology of Disease, 2021, 155, 105384.	2.1	16
26	Role of Complement Component 3 in Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage. Stroke, 2021, 52, 2649-2660.	1.0	21
27	Impact of sex differences on thrombin-induced hydrocephalus and white matter injury: the role of neutrophils. Fluids and Barriers of the CNS, 2021, 18, 38.	2.4	11
28	The Two Faces of Estrogen in Experimental Hemorrhagic Stroke. Translational Stroke Research, 2021, , 1.	2.3	0
29	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	1.7	17
30	Intracerebral Hemorrhage–Induced Brain Injury in Rats: the Role of Extracellular Peroxiredoxin 2. Translational Stroke Research, 2020, 11, 288-295.	2.3	30
31	CD47 Blocking Antibody Accelerates Hematoma Clearance After Intracerebral Hemorrhage in Aged Rats. Translational Stroke Research, 2020, 11, 541-551.	2.3	37
32	Modeling blood–brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids and Barriers of the CNS, 2020, 17, 44.	2.4	38
33	Mechanisms of Post–Hemorrhagic Stroke Hydrocephalus Development: The Role of Kolmer Epiplexus Cells. World Neurosurgery, 2020, 144, 256-257.	0.7	3
34	A novel approach to treatment of thromboembolic stroke in mice: Redirecting neutrophils toward a peripherally implanted CXCL1-soaked sponge. Experimental Neurology, 2020, 330, 113336.	2.0	16
35	This was the year that was: brain barriers and brain fluid research in 2019. Fluids and Barriers of the CNS, 2020, 17, 20.	2.4	6
36	Multinucleated Giant Cells in Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2020, 11, 1095-1102.	2.3	26

#	Article	IF	CITATIONS
37	Recommendations for Clinical Trials in ICH. Stroke, 2020, 51, 1333-1338.	1.0	42
38	Effects of aging on hydrocephalus after intraventricular hemorrhage. Fluids and Barriers of the CNS, 2020, 17, 8.	2.4	14
39	Prx2 (Peroxiredoxin 2) as a Cause of Hydrocephalus After Intraventricular Hemorrhage. Stroke, 2020, 51, 1578-1586.	1.0	27
40	Blending Established and New Perspectives on Choroid Plexus-CSF Dynamics. Physiology in Health and Disease, 2020, , 35-81.	0.2	2
41	Perihematomal brain tissue iron concentration measurement by MRI in patients with intracerebral hemorrhage. CNS Neuroscience and Therapeutics, 2020, 26, 896-901.	1.9	19
42	Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats. Neurobiology of Disease, 2019, 126, 76-84.	2.1	46
43	Early Hemolysis Within Human Intracerebral Hematomas: an MRI Study. Translational Stroke Research, 2019, 10, 52-56.	2.3	29
44	The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiology of Disease, 2019, 126, 13-22.	2.1	14
45	Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neuroscience and Therapeutics, 2019, 25, 1134-1141.	1.9	27
46	Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Frontiers in Neuroscience, 2019, 13, 864.	1.4	39
47	Unexpected encounters at the crossroads: Intersections between dopamine, the immune system and psychiatric disorders at the blood-CSF barrier. Brain, Behavior, and Immunity, 2019, 81, 20-21.	2.0	0
48	White matter T2 hyperintensities and bloodâ€brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: The role of lipocalinâ€2. CNS Neuroscience and Therapeutics, 2019, 25, 1207-1214.	1.9	25
49	Endothelial Targets in Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2240-2247.	1.1	42
50	Complement Inhibition Attenuates Early Erythrolysis in the Hematoma and Brain Injury in Aged Rats. Stroke, 2019, 50, 1859-1868.	1.0	33
51	Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Experimental Neurology, 2019, 318, 244-250.	2.0	28
52	Enhancement of Hematoma Clearance With CD47 Blocking Antibody in Experimental Intracerebral Hemorrhage. Stroke, 2019, 50, 1539-1547.	1.0	61
53	The effect of aging on brain injury and recovery after stroke. Neurobiology of Disease, 2019, 126, 1-2.	2.1	3
54	Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1936-1948.	2.4	31

#	Article	IF	CITATIONS
55	The year in review: progress in brain barriers and brain fluid research in 2018. Fluids and Barriers of the CNS, 2019, 16, 4.	2.4	10
56	Response by Hua et al to Letter Regarding Article, "Enhancement of Hematoma Clearance With CD47 Blocking Antibody in Experimental Intracerebral Hemorrhage― Stroke, 2019, 50, e266.	1.0	0
57	Involvement of human and canine MRP1 and MRP4 in benzylpenicillin transport. PLoS ONE, 2019, 14, e0225702.	1.1	11
58	Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiology of Disease, 2019, 126, 105-116.	2.1	89
59	Brain tissue iron quantification by MRI in intracerebral hemorrhage: Current translational evidence and pitfalls. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 562-564.	2.4	10
60	Brain Ceruloplasmin Expression After Experimental Intracerebral Hemorrhage and Protection Against Iron-Induced Brain Injury. Translational Stroke Research, 2019, 10, 112-119.	2.3	42
61	Claudin-1-Dependent Destabilization of the Blood–Brain Barrier in Chronic Stroke. Journal of Neuroscience, 2019, 39, 743-757.	1.7	86
62	Histidine-rich Glycoprotein Could Be an Early Predictor of Vasospasm after Aneurysmal Subarachnoid Hemorrhage. Acta Medica Okayama, 2019, 73, 29-39.	0.1	6
63	Minocycline Effects on Intracerebral Hemorrhage-Induced Iron Overload in Aged Rats. Stroke, 2018, 49, 995-1002.	1.0	44
64	Comment on "Role of Choroid Plexus in Cerebrospinal Fluid Hydrodynamics― Neuroscience, 2018, 380, 164.	1.1	3
65	Basic and Translational Research in Intracerebral Hemorrhage. Stroke, 2018, 49, 1308-1314.	1.0	41
66	Hematoma clearance as a therapeutic target in intracerebral hemorrhage: From macro to micro. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 741-745.	2.4	53
67	Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure. FASEB Journal, 2018, 32, 2615-2629.	0.2	49
68	UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. Journal of Neurosurgery, 2018, 128, 701-709.	0.9	17
69	Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology, 2018, 134, 240-248.	2.0	168
70	Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in Neurobiology, 2018, 163-164, 144-171.	2.8	565
71	Expression of periaxin (PRX) specifically in the human cerebrovascular system: PDZ domain-mediated strengthening of endothelial barrier function. Scientific Reports, 2018, 8, 10042.	1.6	22
72	Association of Brain CD163 Expression and Brain Injury/Hydrocephalus Development in a Rat Model of Subarachnoid Hemorrhage. Frontiers in Neuroscience, 2018, 12, 313.	1.4	8

#	Article	IF	CITATIONS
73	Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1255-1275.	2.4	123
74	Progress in brain barriers and brain fluid research in 2017. Fluids and Barriers of the CNS, 2018, 15, 6.	2.4	4
75	Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids and Barriers of the CNS, 2018, 15, 11.	2.4	35
76	Thrombin-induced tolerance against oxygen-glucose deprivation in astrocytes: role of protease-activated receptor-1. Conditioning Medicine, 2018, 1, 57-63.	1.3	7
77	Is there a central role for the cerebral endothelium and the vasculature in the brain response to conditioning stimuli?. Conditioning Medicine, 2018, 1, 220-232.	1.3	5
78	Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1243-E1252.	3.3	119
79	Brain barriers and brain fluid research in 2016: advances, challenges and controversies. Fluids and Barriers of the CNS, 2017, 14, 4.	2.4	1
80	Influence of peptide transporter 2 (PEPT2) on the distribution of cefadroxil in mouse brain: A microdialysis study. Biochemical Pharmacology, 2017, 131, 89-97.	2.0	21
81	Bloodâ€brain barrier models derived from individual patients: a new frontier. Journal of Neurochemistry, 2017, 140, 843-844.	2.1	3
82	CD163, a Hemoglobin/Haptoglobin Scavenger Receptor, After Intracerebral Hemorrhage: Functions in Microglia/Macrophages Versus Neurons. Translational Stroke Research, 2017, 8, 612-616.	2.3	45
83	Endocytosis of tight junction proteins and the regulation of degradation and recycling. Annals of the New York Academy of Sciences, 2017, 1397, 54-65.	1.8	73
84	MRI Characterization in the Acute Phase of Experimental Subarachnoid Hemorrhage. Translational Stroke Research, 2017, 8, 234-243.	2.3	42
85	CD163 Expression in Neurons After Experimental Intracerebral Hemorrhage. Stroke, 2017, 48, 1369-1375.	1.0	65
86	A novel role for PHT1 in the disposition of l -histidine in brain: In vitro slice and in vivo pharmacokinetic studies in wildtype and Pht1 null mice. Biochemical Pharmacology, 2017, 124, 94-102.	2.0	14
87	Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2017, 21, 1111-1122.	1.5	55
88	The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids and Barriers of the CNS, 2017, 14, 8.	2.4	35
89	Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2017, 8, 174-182.	2.3	88
90	Brain iron overload following intracranial haemorrhage. Stroke and Vascular Neurology, 2016, 1, 172-184.	1.5	101

#	Article	IF	CITATIONS
91	Microglia Activation and Polarization After Intracerebral Hemorrhage in Mice: the Role of Protease-Activated Receptor-1. Translational Stroke Research, 2016, 7, 478-487.	2.3	120
92	Translational Stroke Research on Blood-Brain Barrier Damage: Challenges, Perspectives, and Goals. Translational Stroke Research, 2016, 7, 89-92.	2.3	57
93	Hematoma Changes During Clot Resolution After Experimental Intracerebral Hemorrhage. Stroke, 2016, 47, 1626-1631.	1.0	96
94	d-Allose Attenuates Overexpression of Inflammatory Cytokines after Cerebral Ischemia/Reperfusion Injury in Gerbil. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2184-2188.	0.7	20
95	COA-Cl, a Novel Synthesized Nucleoside Analog, Exerts Neuroprotective Effects in the Acute Phase of Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2637-2643.	0.7	13
96	STAT3 Inhibition as a Therapeutic Strategy for Chordoma. Journal of Neurological Surgery, Part B: Skull Base, 2016, 77, 510-520.	0.4	9
97	Intraventricular Hemorrhage: the Role of Blood Components in Secondary Injury and Hydrocephalus. Translational Stroke Research, 2016, 7, 447-451.	2.3	60
98	Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Science Translational Medicine, 2016, 8, 328ra29.	5.8	106
99	Structural Alterations to the Endothelial Tight Junction Complex During Stroke. Springer Series in Translational Stroke Research, 2016, , 3-23.	0.1	1
100	Role of lipocalin 2 in intraventricular haemoglobin-induced brain injury. Stroke and Vascular Neurology, 2016, 1, 37-43.	1.5	13
101	Critical Role of the Sphingolipid Pathway in Stroke: a Review of Current Utility and Potential Therapeutic Targets. Translational Stroke Research, 2016, 7, 420-438.	2.3	58
102	Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Research, 2016, 1635, 86-94.	1.1	61
103	Modifying blood–brain barrier transport to bring hope for patients with lysosomal storage diseases. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 474-475.	2.4	1
104	Role of Lipocalin-2 in Thrombin-Induced Brain Injury. Stroke, 2016, 47, 1078-1084.	1.0	21
105	Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nature Communications, 2016, 7, 10523.	5.8	309
106	Ryanodine receptors contribute to the induction of ischemic tolerance. Brain Research Bulletin, 2016, 122, 45-53.	1.4	4
107	Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers, 2016, 4, e1154641.	1.6	261
108	Role of Erythrocyte CD47 in Intracerebral Hematoma Clearance. Stroke, 2016, 47, 505-511.	1.0	67

#	Article	IF	CITATIONS
109	Effect of Gender on Iron-induced Brain Injury in Low Aerobic Capacity Rats. Acta Neurochirurgica Supplementum, 2016, 121, 367-371.	0.5	3
110	Mechanisms Underlying Astrocyte Endfeet Swelling in Stroke. Acta Neurochirurgica Supplementum, 2016, 121, 19-22.	0.5	18
111	Deferoxamine Attenuated the Upregulation of Lipocalin-2 Induced by Traumatic Brain Injury in Rats. Acta Neurochirurgica Supplementum, 2016, 121, 291-294.	0.5	19
112	Analysis of Small Ischemic Lesions in the Examinees of a Brain Dock and Neurological Examination of Animals Subjected to Cortical or Basal Ganglia Photothrombotic Infarction. Acta Neurochirurgica Supplementum, 2016, 121, 93-97.	0.5	5
113	Lipocalin 2 and Blood-Brain Barrier Disruption in White Matter after Experimental Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 131-134.	0.5	32
114	Basal Ganglia Damage in Experimental Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 141-144.	0.5	2
115	Zinc Protoporphyrin Attenuates White Matter Injury after Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 199-202.	0.5	9
116	The Effect of Gender on Acute Hydrocephalus after Experimental Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 121, 335-339.	0.5	13
117	Effects of Gender and Estrogen Receptors on Iron-Induced Brain Edema Formation. Acta Neurochirurgica Supplementum, 2016, 121, 341-345.	0.5	8
118	Role of Protease-Activated Receptor-1 in Glioma Growth. Acta Neurochirurgica Supplementum, 2016, 121, 355-360.	0.5	14
119	Minocycline Attenuates Iron-Induced Brain Injury. Acta Neurochirurgica Supplementum, 2016, 121, 361-365.	0.5	17
120	Acetazolamide Attenuates Thrombin-Induced Hydrocephalus. Acta Neurochirurgica Supplementum, 2016, 121, 373-377.	0.5	15
121	Effects of Aerobic Capacity on Thrombin-Induced Hydrocephalus and White Matter Injury. Acta Neurochirurgica Supplementum, 2016, 121, 379-384.	0.5	7
122	Role of Human Breast Cancer Related Protein versus P-Glycoprotein as an Efflux Transporter for Benzylpenicillin: Potential Importance at the Blood-Brain Barrier. PLoS ONE, 2016, 11, e0157576.	1.1	2
123	Advances in brain barriers and brain fluid research and news from Fluids and Barriers of the CNS. Fluids and Barriers of the CNS, 2015, 13, 1.	2.4	8
124	A magnetic resonance imaging grading system for subarachnoid hemorrhage severity in a rat model. Journal of Neuroscience Methods, 2015, 243, 115-119.	1.3	10
125	Microglia/Macrophage Polarization After Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2015, 6, 407-409.	2.3	94
126	Discovery of anthranilamides as a novel class of inhibitors of neurotropic alphavirus replication. Bioorganic and Medicinal Chemistry, 2015, 23, 1569-1587.	1.4	9

#	Article	IF	CITATIONS
127	Iron-Induced Necrotic Brain Cell Death in Rats with Different Aerobic Capacity. Translational Stroke Research, 2015, 6, 215-223.	2.3	29
128	A balanced view of choroid plexus structure and function: Focus on adult humans. Experimental Neurology, 2015, 267, 78-86.	2.0	167
129	Intercellular cross-talk in intracerebral hemorrhage. Brain Research, 2015, 1623, 97-109.	1.1	35
130	Role of Lipocalin-2 in Brain Injury after Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1454-1461.	2.4	52
131	New Grading System Based on Magnetic Resonance Imaging in a Mouse Model of Subarachnoid Hemorrhage. Stroke, 2015, 46, 582-584.	1.0	22
132	Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats. Experimental Neurology, 2015, 272, 128-134.	2.0	40
133	PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk. Acta Neuropathologica, 2015, 130, 731-750.	3.9	50
134	White Matter Injury After Subarachnoid Hemorrhage. Stroke, 2015, 46, 2909-2915.	1.0	72
135	Effect of transporter inhibition on the distribution of cefadroxil in rat brain. Fluids and Barriers of the CNS, 2014, 11, 25.	2.4	21
136	Hydrocephalus after Intraventricular Hemorrhage: The Role of Thrombin. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 489-494.	2.4	79
137	The effects of d-allose on transient ischemic neuronal death and analysis of its mechanism. Brain Research Bulletin, 2014, 109, 127-131.	1.4	18
138	Deferoxamine Attenuates White Matter Injury in a Piglet Intracerebral Hemorrhage Model. Stroke, 2014, 45, 290-292.	1.0	70
139	Divergent developmental expression and function of the protonâ€coupled oligopeptide transporters PepT2 and PhT1 in regional brain slices of mouse and rat. Journal of Neurochemistry, 2014, 129, 955-965.	2.1	22
140	Novel Indole-2-Carboxamide Compounds Are Potent Broad-Spectrum Antivirals Active against Western Equine Encephalitis Virus <i>In Vivo</i> . Journal of Virology, 2014, 88, 11199-11214.	1.5	13
141	Role of Hemoglobin and Iron in Hydrocephalus After Neonatal Intraventricular Hemorrhage. Neurosurgery, 2014, 75, 696-706.	0.6	83
142	Acute White Matter Injury After Experimental Subarachnoid Hemorrhage. Stroke, 2014, 45, 2141-2143.	1.0	60
143	Blood Pressure Lowering and Acute Perihematomal Brain Edema After Intracerebral Hemorrhage. Stroke, 2014, 45, 1241-1242.	1.0	4
144	Progress in translational research on intracerebral hemorrhage: Is there an end in sight?. Progress in Neurobiology, 2014, 115, 45-63.	2.8	132

#	Article	IF	CITATIONS
145	Inhibition of junctional adhesion molecule-A/LFA interaction attenuates leukocyte trafficking and inflammation in brain ischemia/reperfusion injury. Neurobiology of Disease, 2014, 67, 57-70.	2.1	72
146	Role of Red Blood Cell Lysis and Iron in Hydrocephalus after Intraventricular Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1070-1075.	2.4	117
147	Brain CD47 expression in a swine model of intracerebral hemorrhage. Brain Research, 2014, 1574, 70-76.	1.1	31
148	Full Steam Ahead with Remote Ischemic Conditioning for Stroke. Translational Stroke Research, 2014, 5, 535-537.	2.3	14
149	News from the editors of Fluids and Barriers of the CNS. Fluids and Barriers of the CNS, 2014, 11, 13.	2.4	1
150	Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage. Fluids and Barriers of the CNS, 2014, 11, 18.	2.4	174
151	Thrombin-Induced Cerebral Hemorrhage: Role of Protease-Activated Receptor-1. Translational Stroke Research, 2014, 5, 472-475.	2.3	48
152	Deferoxamine Attenuates Acute Hydrocephalus After Traumatic Brain Injury in Rats. Translational Stroke Research, 2014, 5, 586-594.	2.3	76
153	Neuroprotection of granulocyte colony-stimulating factor during the acute phase of transient forebrain ischemia in gerbils. Brain Research, 2014, 1548, 49-55.	1.1	9
154	Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine, 2014, 21, 1189-1195.	2.3	76
155	Deferoxamine Reduces Neuronal Death and Hematoma Lysis After Intracerebral Hemorrhage in Aged Rats. Translational Stroke Research, 2013, 4, 546-553.	2.3	84
156	Impact of Lipopolysaccharide-Induced Inflammation on the Disposition of the Aminocephalosporin Cefadroxil. Antimicrobial Agents and Chemotherapy, 2013, 57, 6171-6178.	1.4	13
157	Optimization of Novel Indole-2-carboxamide Inhibitors of Neurotropic Alphavirus Replication. Journal of Medicinal Chemistry, 2013, 56, 9222-9241.	2.9	27
158	Should the STAIR Criteria Be Modified for Preconditioning Studies?. Translational Stroke Research, 2013, 4, 3-14.	2.3	15
159	DARPP-32 to Quantify Intracerebral Hemorrhage-Induced Neuronal Death in Basal Ganglia. Translational Stroke Research, 2013, 4, 130-134.	2.3	28
160	Role of iron in brain lipocalin 2 upregulation after intracerebral hemorrhage in rats. Brain Research, 2013, 1505, 86-92.	1.1	64
161	Susceptibility to intracerebral hemorrhage-induced brain injury segregates with low aerobic capacity in rats. Neurobiology of Disease, 2013, 49, 22-28.	2.1	10
162	Subarachnoid Hemorrhage-Induced Hydrocephalus in Rats. Stroke, 2013, 44, 547-550.	1.0	72

#	Article	IF	CITATIONS
163	Oligopeptide and Peptide-Like Drug Transport. , 2013, , 1688-1695.		1
164	Cerebral Hemorrhage, Brain Edema, and Heme Oxygenase-1 Expression After Experimental Traumatic Brain Injury. , 2013, 118, 83-87.		23
165	T2 and T2* Magnetic Resonance Imaging Sequences Predict Brain Injury After Intracerebral Hemorrhage in Rats. Acta Neurochirurgica Supplementum, 2013, 118, 151-155.	0.5	5
166	Brain Edema Formation and Complement Activation in a Rat Model of Subarachnoid Hemorrhage. , 2013, 118, 157-161.		15
167	Preconditioning and Intracerebral Hemorrhage. , 2013, , 309-316.		Ο
168	Brain Edema and Blood–Brain Barrier Opening After Photothrombotic Ischemia in Rat. Acta Neurochirurgica Supplementum, 2013, 118, 11-15.	0.5	4
169	Protective effects of isothiocyanates on blood-CSF barrier disruption induced by oxidative stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R1-R7.	0.9	31
170	Property-based design of a glucosylceramide synthase inhibitor that reduces glucosylceramide in the brain. Journal of Lipid Research, 2012, 53, 282-291.	2.0	48
171	Relocalization of Junctional Adhesion Molecule A during Inflammatory Stimulation of Brain Endothelial Cells. Molecular and Cellular Biology, 2012, 32, 3414-3427.	1.1	62
172	Role of Protease-Activated Receptor-1 in Brain Injury After Experimental Global Cerebral Ischemia. Stroke, 2012, 43, 2476-2482.	1.0	48
173	Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurology, The, 2012, 11, 720-731.	4.9	980
174	Edaravone, a free radical scavenger, attenuates behavioral deficits following transient forebrain ischemia by inhibiting oxidative damage in gerbils. Neuroscience Letters, 2012, 506, 28-32.	1.0	18
175	Na+ and K+ ion imbalances in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1671-1681.	1.8	105
176	Novel Inhibitors of Neurotropic Alphavirus Replication That Improve Host Survival in a Mouse Model of Acute Viral Encephalitis. Journal of Medicinal Chemistry, 2012, 55, 3535-3545.	2.9	31
177	Iron Enhances the Neurotoxicity of Amyloid β. Translational Stroke Research, 2012, 3, 107-113.	2.3	20
178	Inhibition of Carbonic Anhydrase Reduces Brain Injury After Intracerebral Hemorrhage. Translational Stroke Research, 2012, 3, 130-137.	2.3	57
179	Brain Water Content: a Misunderstood Measurement?. Translational Stroke Research, 2012, 3, 263-265.	2.3	106
180	Ischemic Preconditioning Attenuates Brain Edema After Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2012, 3, 180-187.	2.3	23

#	Article	IF	CITATIONS
181	Mechanisms of Hydrocephalus After Neonatal and Adult Intraventricular Hemorrhage. Translational Stroke Research, 2012, 3, 25-38.	2.3	179
182	Intracerebral Hemorrhage: Mechanisms and Therapies. Translational Stroke Research, 2012, 3, 1-3.	2.3	14
183	Biochemical and Molecular Biological Assessments of Intracerebral Hemorrhage. Springer Protocols, 2012, , 663-674.	0.1	0
184	lron as a Therapeutic Target in Intracerebral Hemorrhage: Preclinical Testing of Deferoxamine. , 2012, , 403-416.		0
185	Tracing the Endocytosis of Claudin-5 in Brain Endothelial Cells. Methods in Molecular Biology, 2011, 762, 303-320.	0.4	21
186	Deferoxamine Reduces Cavity Size in the Brain After Intracerebral Hemorrhage in Aged Rats. Acta Neurochirurgica Supplementum, 2011, 111, 185-190.	0.5	16
187	Anti-oxidative effects of d-allose, a rare sugar, on ischemia-reperfusion damage following focal cerebral ischemia in rat. Neuroscience Letters, 2011, 487, 103-106.	1.0	49
188	Neural progenitor cells and blood–brain barrier modeling. Journal of Neurochemistry, 2011, 119, 417-418.	2.1	1
189	Where did the ventricles go?. Journal of Neurochemistry, 2011, 120, no-no.	2.1	1
190	Distribution of Glycylsarcosine and Cefadroxil among Cerebrospinal Fluid, Choroid Plexus, and Brain Parenchyma after Intracerebroventricular Injection is Markedly Different between Wild-Type and Pept2 Null Mice. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 250-261.	2.4	31
191	Choroid plexus transport: gene deletion studies. Fluids and Barriers of the CNS, 2011, 8, 26.	2.4	38
192	Thrombin-induced autophagy: A potential role in intracerebral hemorrhage. Brain Research, 2011, 1424, 60-66.	1.1	47
193	Brain injury after intracerebral hemorrhage in spontaneously hypertensive rats. Journal of Neurosurgery, 2011, 114, 1805-1811.	0.9	31
194	Effects of Progesterone and Testosterone on ICH-Induced Brain Injury in Rats. Acta Neurochirurgica Supplementum, 2011, 111, 289-293.	0.5	24
195	Red Blood Cell Lysis and Brain Tissue-Type Transglutaminase Upregulation in a Hippocampal Model of Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 101-105.	0.5	8
196	Iron Accumulation and DNA Damage in a Pig Model of Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 123-128.	0.5	22
197	Minocycline-Induced Attenuation of Iron Overload and Brain Injury After Experimental Intracerebral Hemorrhage. Stroke, 2011, 42, 3587-3593.	1.0	110
198	Role of Iron in Brain Injury After Intraventricular Hemorrhage. Stroke, 2011, 42, 465-470.	1.0	141

#	Article	lF	CITATIONS
199	Nicotine aggravates the brain postischemic inflammatory response. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1518-H1529.	1.5	54
200	Deferoxamine Reduces Early Brain Injury Following Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 112, 101-106.	0.5	22
201	Clot Formation, Vascular Repair and Hematoma Resolution After ICH, a Coordinating Role for Thrombin?. Acta Neurochirurgica Supplementum, 2011, 111, 71-75.	0.5	8
202	Effects of Aging on Autophagy After Experimental Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 113-117.	0.5	21
203	Effects of Gender on Heart Injury After Intracerebral Hemorrhage in Rats. Acta Neurochirurgica Supplementum, 2011, 111, 119-122.	0.5	2
204	Hemoglobin Expression in Neurons and Glia After Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 133-137.	0.5	11
205	Deferoxamine Affects Heat Shock Protein Expression in Heart after Intracerebral Hemorrhage in Aged Rats. Acta Neurochirurgica Supplementum, 2011, 111, 197-200.	0.5	5
206	Thrombin Preconditioning Attenuates Iron-Induced Neuronal Death. Acta Neurochirurgica Supplementum, 2011, 111, 259-263.	0.5	3
207	Tamoxifen Treatment for Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 271-275.	0.5	10
208	The Brain Tumor Window Model. Neurosurgery, 2010, 66, 736-743.	0.6	40
209	Brain Alpha- and Beta-Globin Expression after Intracerebral Hemorrhage. Translational Stroke Research, 2010, 1, 48-56.	2.3	40
210	Is There a Place for Cerebral Preconditioning in the Clinic?. Translational Stroke Research, 2010, 1, 4-18.	2.3	31
211	Intact and injured endothelial cells differentially modulate postnatal murine forebrain neural stem cells. Neurobiology of Disease, 2010, 37, 218-227.	2.1	57
212	Kyotorphin transport and metabolism in rat and mouse neonatal astrocytes. Brain Research, 2010, 1347, 11-18.	1.1	9
213	Thrombin-induced neuronal protection: Role of the mitogen activated protein kinase/ribosomal protein S6 kinase pathway. Brain Research, 2010, 1361, 93-101.	1.1	19
214	Hemoglobin and Iron Handling in Brain after Subarachnoid Hemorrhage and the Effect of Deferoxamine on Early Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1793-1803.	2.4	142
215	Receptor regulation of osmolyte homeostasis in neural cells. Journal of Physiology, 2010, 588, 3355-3364.	1.3	32
216	Deferoxamine Treatment for Intracerebral Hemorrhage in Aged Rats. Stroke, 2010, 41, 375-382.	1.0	113

#	Article	IF	CITATIONS
217	Serine Protease Inhibitor Attenuates Intracerebral Hemorrhage-Induced Brain Injury and Edema Formation in Rat. Acta Neurochirurgica Supplementum, 2010, 106, 307-310.	0.5	9
218	Deferoxamine Reduces Intracerebral Hematoma-Induced Iron Accumulation and Neuronal Death in Piglets. Stroke, 2009, 40, 2241-2243.	1.0	156
219	Caveolae-mediated Internalization of Occludin and Claudin-5 during CCL2-induced Tight Junction Remodeling in Brain Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 19053-19066.	1.6	158
220	Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurological Research, 2009, 31, 183-188.	0.6	72
221	Development of a Rat Model of Photothrombotic Ischemia and Infarction Within the Caudoputamen. Stroke, 2009, 40, 248-253.	1.0	60
222	Thrombin and Brain Recovery After Intracerebral Hemorrhage. Stroke, 2009, 40, S88-9.	1.0	31
223	Effects of Deferoxamine on Intracerebral Hemorrhage-Induced Brain Injury in Aged Rats. Stroke, 2009, 40, 1858-1863.	1.0	131
224	Thrombin up-regulates vascular endothelial growth factor in experimental gliomas. Neurological Research, 2009, 31, 759-765.	0.6	10
225	Influence of genetic knockout of <i>Pept2</i> on the in vivo disposition of endogenous and exogenous carnosine in wild-type and <i>Pept2</i> null mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R986-R991.	0.9	71
226	Tissue-type transglutaminase and the effects of cystamine on intracerebral hemorrhage-induced brain edema and neurological deficits. Brain Research, 2009, 1249, 229-236.	1.1	26
227	Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Research, 2009, 1287, 126-135.	1.1	84
228	Effects of deferoxamine on brain injury after transient focal cerebral ischemia in rats with hyperglycemia. Brain Research, 2009, 1291, 113-121.	1.1	40
229	Transport Mechanisms of Carnosine in SKPT Cells: Contribution of Apical and Basolateral Membrane Transporters. Pharmaceutical Research, 2009, 26, 172-181.	1.7	32
230	Effects of Cerebral Ischemia on Neuronal Hemoglobin. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 596-605.	2.4	51
231	Enhanced antinociceptive response to intracerebroventricular kyotorphin in <i>Pept2</i> null mice. Journal of Neurochemistry, 2009, 109, 1536-1543.	2.1	23
232	IN VITRO CHARACTERIZATION OF A TARGETED, DYE-LOADED NANODEVICE FOR INTRAOPERATIVE TUMOR DELINEATION. Neurosurgery, 2009, 64, 965-972.	0.6	56
233	COMPARISON OF EXPERIMENTAL RAT MODELS OF EARLY BRAIN INJURY AFTER SUBARACHNOID HEMORRHAGE. Neurosurgery, 2009, 65, 331-343.	0.6	107
234	Characterization of an improved double hemorrhage rat model for the study of delayed cerebral vasospasm. Journal of Neuroscience Methods, 2008, 168, 358-366.	1.3	36

#	Article	IF	CITATIONS
235	Autophagy after Experimental Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 897-905.	2.4	106
236	3CB2, a marker of radial glia, expression after experimental intracerebral hemorrhage: Role of thrombin. Brain Research, 2008, 1226, 156-162.	1.1	2
237	Effects of Thrombin on Neurogenesis After Intracerebral Hemorrhage. Stroke, 2008, 39, 2079-2084.	1.0	76
238	Activation of Muscarinic Cholinergic Receptors on Human SH-SY5Y Neuroblastoma Cells Enhances Both the Influx and Efflux of K ⁺ under Conditions of Hypo-Osmolarity. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 457-465.	1.3	8
239	Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage. Journal of Neurosurgery, 2008, 109, 1148-1154.	0.9	23
240	Role and Relevance of PEPT2 in Drug Disposition, Dynamics, and Toxicity. Drug Metabolism and Pharmacokinetics, 2008, 23, 236-242.	1.1	77
241	Brain Endothelial Cell-Cell Junctions: How to "Open" the Blood Brain Barrier. Current Neuropharmacology, 2008, 6, 179-192.	1.4	433
242	Edaravone Attenuates Brain Edema and Neurologic Deficits in a Rat Model of Acute Intracerebral Hemorrhage. Stroke, 2008, 39, 463-469.	1.0	126
243	Thrombin enhances glioma growth. Acta Neurochirurgica Supplementum, 2008, 102, 363-366.	0.5	5
244	Impact of Genetic Knockout of PEPT2 on the Pharmacokinetics, Renal Tubular Reabsorption, and Brain Penetration of Cefadroxil in Transgenic Mice. FASEB Journal, 2008, 22, 184.5.	0.2	0
245	Hyperbaric Oxygen-Induced Attenuation of Hemorrhagic Transformation After Experimental Focal Transient Cerebral Ischemia. Stroke, 2007, 38, 1362-1367.	1.0	84
246	Brain Injury After Intracerebral Hemorrhage. Stroke, 2007, 38, 759-762.	1.0	256
247	Intracerebral Hemorrhage and Intraventricular Hemorrhage–Induced Brain Injury. , 2007, , 281-287.		Ο
248	A New Hippocampal Model for Examining Intracerebral Hemorrhage-Related Neuronal Death. Stroke, 2007, 38, 2861-2863.	1.0	57
249	Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurgical Focus, 2007, 22, 1-6.	1.0	32
250	Impact of Genetic Knockout of PEPT2 on Cefadroxil Pharmacokinetics, Renal Tubular Reabsorption, and Brain Penetration in Mice. Drug Metabolism and Disposition, 2007, 35, 1209-1216.	1.7	75
251	Absence of the Chemokine Receptor CCR2 Protects Against Cerebral Ischemia/Reperfusion Injury in Mice. Stroke, 2007, 38, 1345-1353.	1.0	311
252	The effect of thrombin on a 6-hydroxydopamine model of Parkinson's disease depends on timing. Behavioural Brain Research, 2007, 183, 161-168.	1.2	16

#	Article	IF	CITATIONS
253	Effect of Sustained-Mild and Transient-Severe Hyperglycemia on Ischemia-Induced Blood–Brain Barrier Opening. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1573-1582.	2.4	74
254	Peptide transporter 2 (PEPT2) expression in brain protects against 5â€aminolevulinic acid neurotoxicity. Journal of Neurochemistry, 2007, 103, 2058-2065.	2.1	57
255	Recent Research on Changes in Genomic Regulation and Protein Expression in Intracerebral Haemorrhage. International Journal of Stroke, 2007, 2, 265-269.	2.9	11
256	Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures. Neuroscience Letters, 2006, 396, 225-229.	1.0	16
257	Tumor Necrosis Factor-α Increases in the Brain after Intracerebral Hemorrhage and Thrombin Stimulation. Neurosurgery, 2006, 58, 542-550.	0.6	117
258	The Effects of Cerebral Ischemia on the Rat Choroid Plexus. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 675-683.	2.4	49
259	Effects of the Chemokine CCL2 on Blood–Brain Barrier Permeability during Ischemia–Reperfusion Injury. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 797-810.	2.4	205
260	The Role of Complement C3 in Intracerebral Hemorrhage-Induced Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1490-1495.	2.4	84
261	Evaluation of polymer and self-assembled monolayer-coated silicone surfaces to reduce neural cell growth. Biomaterials, 2006, 27, 1519-1526.	5.7	32
262	Protease-activated receptor-1 mediates protection elicited by thrombin preconditioning in a rat 6-hydroxydopamine model of Parkinson's disease. Brain Research, 2006, 1116, 177-186.	1.1	29
263	PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes. Brain Research, 2006, 1122, 18-23.	1.1	44
264	Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurology, The, 2006, 5, 53-63.	4.9	1,211
265	Long-term effects of experimental intracerebral hemorrhage: the role of iron. Journal of Neurosurgery, 2006, 104, 305-312.	0.9	216
266	Protein Kinase Cα-RhoA Cross-talk in CCL2-induced Alterations in Brain Endothelial Permeability. Journal of Biological Chemistry, 2006, 281, 8379-8388.	1.6	167
267	CCL2 Regulates Angiogenesis via Activation of Ets-1 Transcription Factor. Journal of Immunology, 2006, 177, 2651-2661.	0.4	170
268	Oligopeptide Transport at the Blood—Brain and Blood-CSF Barriers. , 2006, , 1423-1428.		3
269	Acute Subdural Hematoma: New Model Delineation and Effects of Coagulation Inhibitors. Neurosurgery, 2005, 57, 565-572.	0.6	17
270	The Deleterious or Beneficial Effects of Different Agents in Intracerebral Hemorrhage. Stroke, 2005, 36, 1594-1596.	1.0	73

#	Article	IF	CITATIONS
271	Monocyte Chemoattractant Protein-1 Regulation of Blood–Brain Barrier Permeability. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 593-606.	2.4	335
272	Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Research, 2005, 1039, 30-36.	1.1	141
273	Glycyl-l-Glutamine Disposition in Rat Choroid Plexus Epithelial Cells in Primary Culture: Role of PEPT2. Pharmaceutical Research, 2005, 22, 1281-1286.	1.7	17
274	PEPT2 (Slc15a2)-Mediated Unidirectional Transport of Cefadroxil from Cerebrospinal Fluid into Choroid Plexus. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1101-1108.	1.3	29
275	Estrogen therapy for experimental intracerebral hemorrhage in rats. Journal of Neurosurgery, 2005, 103, 97-103.	0.9	62
276	Role and Relevance of Peptide Transporter 2 (PEPT2) in the Kidney and Choroid Plexus: In Vivo Studies with Glycylsarcosine in Wild-Type and PEPT2 Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 240-247.	1.3	85
277	Ischemic preconditioning procedure induces behavioral deficits in the absence of brain injury?. Neurological Research, 2005, 27, 261-267.	0.6	17
278	Holo-Transferrin and Thrombin Can Interact to Cause Brain Damage. Stroke, 2005, 36, 348-352.	1.0	64
279	Thrombin preconditioning provides protection in a 6-hydroxydopamine Parkinson's disease model. Neuroscience Letters, 2005, 373, 189-194.	1.0	36
280	The Blood'Ã,,,ìCSF Barrier and Cerebral Ischemia. , 2005, , 345-360.		0
281	Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage in rats. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S43-S43.	2.4	0
282	Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Journal of Neurosurgery, 2004, 100, 672-678.	0.9	259
283	Mechanisms of Cefadroxil Uptake in the Choroid Plexus: Studies in Wild-Type and PEPT2 Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 462-467.	1.3	39
284	Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice. Journal of Neurochemistry, 2004, 91, 1024-1024.	2.1	0
285	Intracerebral Hemorrhage in Mice: Model Characterization and Application for Genetically Modified Mice. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 487-494.	2.4	113
286	Intracerebral Hirudin Injection Attenuates Ischemic Damage and Neurologic Deficits without Altering Local Cerebral Blood Flow. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 159-166.	2.4	66
287	Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice. Journal of Neurochemistry, 2004, 89, 375-382.	2.1	44
288	Peptide and peptide analog transport systems at the blood?CSF barrier. Advanced Drug Delivery Reviews, 2004, 56, 1765-1791.	6.6	145

#	Article	IF	CITATIONS
289	Intracerebral Hemorrhage: Pathophysiology and Therapy. Neurocritical Care, 2004, 1, 5-18.	1.2	69
290	Role of PEPT2 in the Choroid Plexus Uptake of Glycylsarcosine and 5-Aminolevulinic Acid: Studies in Wild-Type and Null Mice. Pharmaceutical Research, 2004, 21, 1680-1685.	1.7	36
291	Intracerebral Hemorrhage. Stroke, 2004, 35, 2571-2575.	1.0	127
292	Immunolocalization of the Proton-Coupled Oligopeptide Transporter PEPT2 in Developing Rat Brain. Molecular Pharmaceutics, 2004, 1, 248-256.	2.3	79
293	Preliminary investigation into the expression of proton-coupled oligopeptide transporters in neural retina and retinal pigment epithelium (RPE): lack of functional activity in RPE plasma membranes. Pharmaceutical Research, 2003, 20, 1364-1372.	1.7	41
294	Nestin expression after experimental intracerebral hemorrhage. Brain Research, 2003, 981, 108-117.	1.1	30
295	Thrombin Preconditioning Attenuates Brain Edema Induced by Erythrocytes and Iron. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1448-1454.	2.4	67
296	The Protective Effects of Preconditioning on Cerebral Endothelial Cells in Vitro. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1348-1355.	2.4	47
297	Glutamine transport at the blood–brain and blood–cerebrospinal fluid barriers. Neurochemistry International, 2003, 43, 279-288.	1.9	44
298	Iron and Iron-Handling Proteins in the Brain After Intracerebral Hemorrhage. Stroke, 2003, 34, 2964-2969.	1.0	365
299	Potential role of MCP-1 in endothelial cell tight junction `opening': signaling via Rho and Rho kinase. Journal of Cell Science, 2003, 116, 4615-4628.	1.2	345
300	Targeted Disruption of the PEPT2 Gene Markedly Reduces Dipeptide Uptake in Choroid Plexus. Journal of Biological Chemistry, 2003, 278, 4786-4791.	1.6	86
301	Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats. Journal of Neurosurgery, 2003, 99, 131-137.	0.9	28
302	Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Neurosurgical Focus, 2003, 15, 1-7.	1.0	39
303	Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. Journal of Neurosurgery, 2002, 96, 287-293.	0.9	402
304	Delayed Argatroban Treatment Reduces Edema in a Rat Model of Intracerebral Hemorrhage. Stroke, 2002, 33, 3012-3018.	1.0	121
305	Role of PEPT2 in Peptide/Mimetic Trafficking at the Blood-Cerebrospinal Fluid Barrier: Studies in Rat Choroid Plexus Epithelial Cells in Primary Culture. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 820-829.	1.3	104
306	Intraventricular Infusion of Vascular Endothelial Growth Factor Promotes Cerebral Angiogenesis with Minimal Brain Edema. Neurosurgery, 2002, 50, 589-598.	0.6	86

#	Article	IF	CITATIONS
307	Behavioral Tests After Intracerebral Hemorrhage in the Rat. Stroke, 2002, 33, 2478-2484.	1.0	454
308	Pathophysiology of brain edema formation. Neurosurgery Clinics of North America, 2002, 13, 371-383.	0.8	192
309	Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Research, 2002, 953, 45-52.	1.1	201
310	The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective?. Journal of Neurochemistry, 2002, 84, 3-9.	2.1	317
311	Choroid Plexus Potassium Cotransport: Modulation by Osmotic Stress and External Potassium. Journal of Neurochemistry, 2002, 64, 2747-2754.	2.1	10
312	Glutamine Uptake at the Blood-Brain Barrier Is Mediated by N-System Transport. Journal of Neurochemistry, 2002, 71, 2565-2573.	2.1	47
313	Plasminogen Activator Inhibitor-1 Induction after Experimental Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 55-61.	2.4	65
314	Thrombin-Receptor Activation and Thrombin-Induced Brain Tolerance. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 404-410.	2.4	89
315	Hypoxia-Inducible Factor-1α Accumulation in the Brain after Experimental Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 689-696.	2.4	67
316	Mechanisms of Edema Formation After Intracerebral Hemorrhage. Stroke, 2001, 32, 2932-2938.	1.0	191
317	Intracerebral Hemorrhage-induced Neuronal Death. Neurosurgery, 2001, 48, 875-883.	0.6	164
318	Systemic Complement Depletion Diminishes Perihematomal Brain Edema in Rats. Stroke, 2001, 32, 162-167.	1.0	119
319	PEPT2-mediated uptake of neuropeptides in rat choroid plexus. Pharmaceutical Research, 2001, 18, 807-813.	1.7	52
320	Attenuation of Ischemic Brain EDEMA and Cerebrovascular Injury after Ischemic Preconditioning in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 22-33.	2.4	115
321	Activation of p44/42 mitogen activated protein kinases in thrombin-induced brain tolerance. Brain Research, 2001, 895, 153-159.	1.1	36
322	Inducible cyclooxygenase-2 expression after experimental intracerebral hemorrhage. Brain Research, 2001, 901, 38-46.	1.1	42
323	Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. Journal of Neurosurgery, 2001, 95, 680-686.	0.9	91
324	The effects of thrombin preconditioning on focal cerebral ischemia in rats. Brain Research, 2000, 867, 173-179.	1.1	74

#	Article	IF	CITATIONS
325	Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Research, 2000, 871, 57-65.	1.1	300
326	Complement activation in the brain after experimental intracerebral hemorrhage. Journal of Neurosurgery, 2000, 92, 1016-1022.	0.9	154
327	Effect of amiloride analogs on DOCA-salt-induced hypertension in rats. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H2215-H2220.	1.5	16
328	Effect of Intracerebral and Subdural Hematomas on Energy-Dependent Transport Across the Blood-Brain Barrier. Journal of Neurotrauma, 1999, 16, 1049-1055.	1.7	10
329	Blood-Brain Barrier Glutamine Transport during Normoglycemic and Hyperglycemic Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 79-86.	2.4	28
330	Blood–brain barrier mechanisms involved in brain calcium and potassium homeostasis. Brain Research, 1999, 815, 200-205.	1.1	38
331	Comparison of cerebral blood flow and injury following intracerebral and subdural hematoma in the rat. Brain Research, 1999, 829, 125-133.	1.1	43
332	Attenuation of Thrombin-Induced Brain Edema by Cerebral Thrombin Preconditioning. Stroke, 1999, 30, 1247-1255.	1.0	204
333	Choroid plexus histidine transport. Brain Research, 1998, 783, 37-43.	1.1	9
334	Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. Journal of Neurosurgery, 1998, 89, 991-996.	0.9	295
335	Plasminogen Activators Potentiate Thrombin-Induced Brain Injury. Stroke, 1998, 29, 1202-1208.	1.0	69
336	Role of Blood Clot Formation on Early Edema Development After Experimental Intracerebral Hemorrhage. Stroke, 1998, 29, 2580-2586.	1.0	329
337	The effects of hypo- and hyperkalemia on choroid plexus potassium transport. Brain Research, 1997, 758, 39-44.	1.1	26
338	Hyperglycemia and the Vascular Effects of Cerebral Ischemia. Stroke, 1997, 28, 149-154.	1.0	126
339	Hyperglycemia and the Vascular Effects of Cerebral Ischemia. , 1997, 70, 27-29.		13
340	Edema from intracerebral hemorrhage: the role of thrombin. Journal of Neurosurgery, 1996, 84, 91-96.	0.9	326
341	Choroid plexus taurine transport. Brain Research, 1996, 715, 17-24.	1.1	16
342	Thrombin-soaked gelatin sponge and brain edema in rats. Journal of Neurosurgery, 1996, 85, 335-339.	0.9	16

#	Article	IF	CITATIONS
343	Blood—Brain Barrier Taurine Transport during Osmotic Stress and in Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 852-859.	2.4	22
344	Mechanisms of Brain Ion Homeostasis during Acute and Chronic Variations of Plasma Potassium. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 336-344.	2.4	16
345	Intracerebral infusion of thrombin as a cause of brain edema. Journal of Neurosurgery, 1995, 83, 1045-1050.	0.9	121
346	N‣ystem Amino Acid Transport at the Blood SF Barrier. Journal of Neurochemistry, 1995, 65, 2571-2576.	2.1	23
347	Blood—Brain Barrier Permeability and Brain Concentration of Sodium, Potassium, and Chloride during Focal Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 29-37.	2.4	141
348	Decrease in Perfusion of Cerebral Capillaries during Incomplete Ischemia and Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 1990, 10, 213-220.	2.4	46
349	Thrombin and secondary brain damage following intracerebral hemorrhage. , 0, , 206-216.		1
350	The Blood-Brain Barrier. , 0, , 277-307.		2
351	Transcriptomic Profile of Blood–Brain Barrier Remodeling in Cerebral Amyloid Angiopathy. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	7