Marc Mangel

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6896330/publications.pdf
Version: 2024-02-01

5

3	A latitudinal gradient in thermal transgenerational plasticity and a test of theory. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210797.	1.2	6
4	Reproductive hyperallometry and managing the worldâ $€^{\mathrm{TM}} \mathbf{s}$ fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
5	Modeling Coupled Nonlinear Multilayered Dynamics: Cyber Attack and Disruption of an Electric Grid. Complexity, 2021, 2021, 1-19.	0.9	1
6	Predicting the population consequences of acoustic disturbance, with application to an endangered gray whale population. Ecological Applications, 2021, 31, e02440.	1.8	15
7	Sidney Holt on principles for the conservation of wild living resources, whaling in the Antarctic, and the Bevertonâ $\epsilon^{" H}$ Holt stockâ€"recruitment relationship. ICES Journal of Marine Science, 2021, 78, 2211-2217.	1.2	2

8 : On the cusp of a revolution in foraging theory. Theoretical Population Biology, 2020, 133, 25-26. 0.51
Optimising harvest strategies over multiple objectives and stakeholder preferences. Ecological
Modelling, 2020, 435, 109243.
Propensity for Risk in Reproductive Strategy Affects Susceptibility to Anthropogenic Disturbance.
10 American Naturalist, 2020, 196, E71-E87.
11 Trends and Carrying Capacity of Sea Otters in Southeast Alaska. Journal of Wildlife Management, 2019, 83, 1073-1089.
0.7 29
Matrix methods for stochastic dynamic programming in ecology and evolutionary biology. Methods in Ecology and Evolution, 2019, 10, 1952-1961.

2.23Modeling optimal responses and fitness consequences in a changing Arctic. Global Change Biology,4.218
2019, 25, 3450-3461.

Anthropogenic disturbance in a changing environment: modelling lifetime reproductive success to

19 Overcoming the Data Crisis in Biodiversity Conservation. Trends in Ecology and Evolution, 2018, 33,
676-688.

Genetic and life-history consequences of extreme climate events. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162118.

Selectivity matters: Rules of thumb for management of plateâ€sized, sexâ€changing fish in the live reef food fish trade. Fish and Fisheries, 2017, 18, 821-836.

A meta-analysis of fecundity in rockfishes (genus Sebastes). Fisheries Research, 2017, 187, 73-85.
0.9

Climate variability and multi-scale assessment of the krill preyscape near the north Antarctic
Peninsula. Polar Biology, 2017, 40, 697-711.

Quantifying the effect of vessel interference on catch rates: A theoretical approach. Ecological
Modelling, 2017, 359, 293-300.

Stateâ€dependent behavioural theory for assessing the fitness consequences of anthropogenic
disturbance on capital and income breeders. Methods in Ecology and Evolution, 2017, 8, 552-560.
2.2

36

Ecosystem Oceanography of Seabird Hotspots: Environmental Determinants and Relationship with
Antarctic Krill Within an Important Fishing Ground. Ecosystems, 2017, 20, 885-903.

Know your organism, know your dataâ€. ICES Journal of Marine Science, 2017, 74, 1237-1248.

Size-conditional smolting and the response of Carmel River steelhead to two decades of conservation efforts. PLoS ONE, 2017, 12, e0188971.

The inverse lifeâ€history problem, sizeâ€dependent mortality and two extensions of results of Holt and
Beverton. Fish and Fisheries, 2017, 18, 1192-1200.

Withinâ€•and amongâ€population variation in vital rates and population dynamics in a variable environment. Ecological Applications, 2016, 26, 2086-2102.

Tradeâ€offs between accuracy and interpretability in von <scp>B</scp>ertalanffy randomâ€effects models of growth. Ecological Applications, 2016, 26, 1535-1552.

Whales, science, and scientific whaling in the International Court of Justice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14523-14527.

Ten principles from evolutionary ecology essential for effective marine conservation. Ecology and Evolution, 2016, 6, 2125-2138.

Feedback control in planarian stem cell systems. BMC Systems Biology, 2016, 10, 17.
3.0

A Framework for Exploring the Role of Bioeconomics on Observed Fishing Patterns and Ecosystem
Dynamics. Coastal Management, 2016, 44, 529-546.
1.0

4
37
38

Reference Points for Optimal Yield: A Framework for Assessing Economic, Conservation, and
37 Sociocultural Tradeoffs in Ecosystem-Based Fishery Management. Coastal Management, 2016, 44,
1.0

10
517-528.

Stochastic dynamic programming: An approach for modelling the population consequences of disturbance due to lost foraging opportunities. Proceedings of Meetings on Acoustics, 2016, , .
$0.3 \quad 5$
$39 \quad$ Risk sensitivity and the behaviour of fishing vessels. Fish and Fisheries, 2015, 16, 399-425. 2.7
The Behavioral Ecology of Fishing Vessels: Achieving Conservation Objectives Through Understanding
the Behavior of Fishing Vessels. Environmental and Resource Economics, 2015, 61, 71-85.

41	Stochastic Dynamic Programming Illuminates the Link Between Environment, Physiology, and Evolution. Bulletin of Mathematical Biology, 2015, 77, 857-877.	0.9	25
42	Thermal Potential for Steelhead Life History Expression in a Southern California Alluvial River. Transactions of the American Fisheries Society, 2015, 144, 258-273.	0.6	8
43	A generalized perturbation approach for exploring stock recruitment relationships. Theoretical Ecology, 2015, 8, 1-13.	0.4	3
44	Threshold levels of generalist predation determine consumer response to resource pulses. Oikos, 2015, 124, 1436-1443.	1.2	10
45	Modeling play: distinguishing between origins and current functions. Adaptive Behavior, 2015, 23, 331-339.	1.1	39

46 State-dependent behavioral theory and the evolution of play. Adaptive Behavior, 2015, 23, 362-370. 6

47	Intercohort size structure dynamics of fire salamander larvae in ephemeral habitats: a mesocosm experiment. Oecologia, 2015, 179, 425-433.	0.9	6
48	Avoiding tipping points in fisheries management through Gaussian process dynamic programming. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141631.	1.2	29
49	Linking physiological approaches to marine vertebrate conservation: using sex steroid hormone determinations in demographic assessments. , 2014, 2, cot035-cot035.		9

50 Determining Individual Variation in Growth and Its Implication for Life-History and Population
1.5

61
Processes Using the Empirical Bayes Method. PLoS Computational Biology, 2014, 10, e1003828.

51 Stochastic Dynamics of Interacting Haematopoietic Stem Cell Niche Lineages. PLoS Computational
1.5

16
Biology, 2014, 10, e1003794.

The emotion system promotes diversity and evolvability. Proceedings of the Royal Society B: Biological
1.2

22
Sciences, 2014, 281, 20141096.
53
The global contribution of forage fish to marine fisheries and ecosystems. Fish and Fisheries, 2014, 15,
43-64.
2.7

311

Stem cell biology is population biology: differentiation of hematopoietic multipotent progenitors to
common lymphoid and myeloid progenitors. Theoretical Biology and Medical Modelling, 2013, 10, 5 .

56 Non-genetic inheritance and changing environments. Non-Genetic Inheritance, 2013, 1, .
0.8

A perspective on steepness, reference points, and stock assessment. Canadian Journal of Fisheries and
Aquatic Sciences, 2013, 70, 930-940.

Linking food availability, body growth and survival in the black-legged kittiwake Rissa tridactyla.
Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 94, 192-200.

Using Grizzly Bears to Assess Harvest-Ecosystem Tradeoffs in Salmon Fisheries. PLoS Biology, 2012, 10,
el001303.

Stateâ€Đependent Migration Timing and Use of Multiple Habitat Types in Anadromous Salmonids.
Transactions of the American Fisheries Society, 2012, 141, 781-794.
0.6

Spatial and temporal scale of density-dependent body growth and its implications for recruitment,
61 population dynamics and management of stream-dwelling salmonid populations. Reviews in Fish
Biology and Fisheries, 2012, 22, 813-825.

62
Maternal age, fecundity, egg quality, and recruitment: linking stock structure to recruitment using
an age-structured Ricker model. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1631-1641.
0.7

Contrasts in Habitat Characteristics and Life History Patterns of <i> Oncorhynchus mykiss</i> in
63 California's Central Coast and Central Valley. Transactions of the American Fisheries Society, 2012, 141, 747-760.

Estimating species composition and quantifying uncertainty in multispecies fisheries: hierarchical
64 Bayesian models for stratified sampling protocols with missing data. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 231-246.

65 Asymptotic size and natural mortality of long-lived fish for data poor stock assessments. Fisheries
Research, 2012, 127-128, 45-48.

Behavioral models as a common framework to predict impacts of environmental change on seabirds and fur seals. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 65-70, 304-315.
0.6

13

Assessing opportunity and relocation costs of marine protected areas using a behavioural model of
2.7

34
longline fleet dynamics. Fish and Fisheries, 2012, 13, 139-157.

Fluctuations of fish populations and the magnifying effects of fishing. Proceedings of the National
Academy of Sciences of the United States of America, 2011, 108, 7075-7080.
3.3

178

Accounting for indirect effects and non-commensurate values in ecosystem based fishery management
(EBFM). Marine Policy, 2010, 34, 114-119.

Scientific inference and experiment in Ecosystem Based Fishery Management, with application to
Steller sea lions in the Bering Sea and Western Gulf of Alaska. Marine Policy, 2010, 34, 836-843.
1.5

9

Smolt Transformation in Two California Steelhead Populations: Effects of Temporal Variability in
Growth. Transactions of the American Fisheries Society, 2010, 139, 1263-1275.

Bayesian analysis of sizeâ€dependent overwinter mortality from sizeâ€£requency distributions. Ecology, 2010, 91, 1016-1024.

Mosquito Biting and Movement Rates as an Emergent Community Property and The Implications for Malarial Interventions. Israel Journal of Ecology and Evolution, 2010, 56, 297-312.

Fishing-induced evolution and changing reproductive ecology of fish: the evolution of steepness.
Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1708-1719.
amei: An<i>R</i>Package for the Adaptive Management of Epidemiological Interventions.
Journal of Statistical Software, 2010, 36, .

A Statistical Framework for the Adaptive Management of Epidemiological Interventions. PLoS ONE,
2009, 4, e5807.

Density dependence, lifespan and the evolutionary dynamics of longevity. Theoretical Population
Biology, 2009, 75, 46-55.

A framework for assessing the biodiversity and fishery aspects of marine reserves. Journal of Applied Ecology, 2009, 46, 735-742.

Steelhead Life History on California's Central Coast: Insights from a Stateâ€Dependent Model.
Transactions of the American Fisheries Society, 2009, 138, 532-548.

82 Connecting recruitment of Antarctic krill and sea ice. Limnology and Oceanography, 2009, 54, 799-811.
1.6

39

MULTIPLE HYPOTHESIS TESTING AND THE DECLINING-POPULATION PARADIGM IN STELLER SEA LIONS. , 2008, 83 18, 1932-1955.

Phenotypic Evolutionary Models in Stem Cell Biology: Replacement, Quiescence, and Variability. PLoS ONE, 2008, 3, el591.
1.1

38

85 The evolutionary ecology of stem cells and their niches â€" the time is now. Oikos, 2007, 116, 1779-1781.
$1.2 \quad 5$

EVOLUTIONARY ANALYSIS OF LIFE SPAN, COMPETITION, AND ADAPTIVE RADIATION, MOTIVATED BY THE
86 PACIFIC ROCKFISHES (SEBASTES). Evolution; International Journal of Organic Evolution, 2007, 61,
1.1 1208-1224.

```
87 Using Life History And Persistence Criteria To Prioritize Habitats For Management And Conservation. ,
2006, 16, 797-806.

A unified treatment of top-down and bottom-up control of reproduction in populations. Ecology Letters, 2005, 8, 691-695.
91 Invariant Ratios Vs. Dimensionless Ratios. Science, 2005, 310, 1426-1427. 6.0 ..... 6
92 salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, ..... 0.7 ..... 23 1219-1230.
93 Bayesian nonparametric analysis of stockÂ-recruitment relationships. Canadian Journal of Fisheries and ..... 0.7 ..... 51 Aquatic Sciences, 2005, 62, 1808-1821.
A Lifeâ€History Perspective on Shortâ€•and Longâ€すerm Consequences of Compensatory Growth. American ..... 1.0 ..... 202
94 Naturalist, 2005, 166, E155-E176.
1.2
 ..... 38
95 Royal Society B: Biological Sciences, 2004, 271, 1143-1150.\(0.5 \quad 25\)The shape of things to come: using models with physiological structure to predict mortality
trajectories. Theoretical Population Biology, \(2004,65,353-359\).\(2.2 \quad 56\)
Growth, telomere dynamics and successful and unsuccessful human aging. Mechanisms of Ageing andDevelopment, 2003, 124, 829-837.
Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predationand conspecific larval density. Ecological Entomology, 2003, 28, 168-173.
PREY STATE AND EXPERIMENTAL DESIGN AFFECT RELATIVE SIZE OF TRAIT- AND DENSITY-MEDIATED INDIRECTEFFECTS. Ecology, 2003, 84, 1140-1150.
101. QUANTIFYING NATURAL SELECTION ON BODY SIZE FROM FIELD DATA: WINTER MORTALITY IN MENIDIA MENIDIA. Ecology, 2003, 84, 2168-2177. ..... 1.5 ..... 62
102 The Important Role of Theory in Conservation Biology. Conservation Biology, 2002, 16, 843-844. ..... 2.4 ..... 3
103 Predation-dependent oviposition habitat selection by the mosquito Culiseta longiareolata: a test of3.054competing hypotheses. Ecology Letters, 2002, 6, 35-40.
1.0 ..... 63
104 Title is missing!. Hydrobiologia, 2002, 485, 183-189.
105 32,481-517. ..... 6.7 ..... 231106 Required reading for (ecological) battles. Trends in Ecology and Evolution, 2001, 16, 110-111.4.22
107 Early oviposition experience affects patch reside0.718
\begin{tabular}{|c|c|c|c|}
\hline 109 & Age and longevity in fish, with consideration of the ferox trout. Experimental Gerontology, 2001, 36, 765-790. & 1.2 & 43 \\
\hline 110 & Habitat Loss and Changes in the Speciesâ€Area Relationship. Conservation Biology, 2000, 14, 893-898. & 2.4 & 78 \\
\hline 111 & Egg maturation, egg resorption and the costliness of transient egg limitation in insects. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1565-1573. & 1.2 & 130 \\
\hline 112 & Evolution of Sizeâ€Dependent Flowering inOnopordum illyricum: A Quantitative Assessment of the Role of Stochastic Selection Pressures. American Naturalist, 1999, 154, 628-651. & 1.0 & 67 \\
\hline 113 & No-take Reserve Networks: Sustaining Fishery Populations and Marine Ecosystems. Fisheries, 1999, 24, 11-25. & 0.6 & 196 \\
\hline 114 & MODELING INVESTMENTS IN SEEDS, CLONAL OFFSPRING, AND TRANSLOCATION IN A CLONAL PLANT. Ecology, 1999, 80, 1202-1220. & 1.5 & 117 \\
\hline 115 & Reproductive senescence and dynamic oviposition behaviour in insects. Evolutionary Ecology, 1998, 12, 871-879. & 0.5 & 53 \\
\hline 116 & Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L.. Evolutionary Ecology, 1998, 12, 581-599. & 0.5 & 350 \\
\hline 117 & A model at the level of the foraging trip for the indirect effects of krill (Euphausia superba) fisheries on krill predators. Ecological Modelling, 1998, 105, 235-256. & 1.2 & 34 \\
\hline
\end{tabular}

IMPLEMENTING THE PRECAUTIONARY PRINCIPLE IN FISHERIES MANAGEMENT THROUGH MARINE RESERVES., 1998, 8, S72-S78.
119 Principles for the conservation of wild living resources. Environment and Development Economics, 1997, 2, 39-110.
\[
1.3
\]

3

120 THE BENEFITS OF INDUCED DEFENSES AGAINST HERBIVORES. Ecology, 1997, 78, 1351-1355.
1.5

184
121 Prevention Versus Remediation in Resistance Management. ACS Symposium Series, 1996, , 169-186.
0.5
4

\section*{122 Principles for the Conservation of Wild Living Resources. , 1996, 6, 338-362.}

236

123 Life history invariants, age at maturity and the ferox trout. Evolutionary Ecology, 1996, 10, 249-263. 0.536

Patchâ€leaving rules for parasitoids with imperfect host discrimination. Ecological Entomology, 1994,
1.1

77

125 Life expectancy and reproduction. Nature, 1993, 364, 108-108.
13.7
127 Discussion: From individuals to ecosystems; the papers of Skellam, Lindeman and Hutchinson. Bulletin
of Mathematical Biology, 1991, 53, 119-134.

Adaptive walks on behavioural landscapes and the evolution of optimal behaviour by natural selection. Evolutionary Ecology, 1991, 5, 30-39.

Evolutionary optimization and neural network models of behavior. Journal of Mathematical Biology, 1990, 28, 237-56.

130 A dynamic habitat selection game. Mathematical Biosciences, 1990, 100, 241-248.


134 On the evolutionary ecology of marking pheromones. Evolutionary Ecology, 1988, 2, 289-315.
0.5

116

135 Dynamic models in behavioural and evolutionary ecology. Nature, 1988, 332, 29-34.
13.7

340

136 Dynamic theories of behavior. Behavioral and Brain Sciences, 1988, 11, 139-141.

137 Opposition site selection and clutch size in insects. Journal of Mathematical Biology, 1987, 25, 1-22.
0.8

238

138 The evolutionary advantages of group foraging. Theoretical Population Biology, 1986, 30, 45-75.
0.5

541

139 Towards a Unifield Foraging Theory. Ecology, 1986, 67, 1127-1138.
1.5

478

140 Weapon acquisition with target uncertainty. Naval Research Logistics Quarterly, 1985, 32, 567-588.
0.4

Search and Stock Depletion: Theory and Applications. Canadian Journal of Fisheries and Aquatic
0.7

Sciences, 1985, 42, 150-163.

Regulatory Mechanisms and Information Processing in Uncertain Fisheries. Marine Resource Economics, 1985, 1, 389-418.

Abraham Wald's Work on Aircraft Survivability. Journal of the American Statistical Association, 1984,
79, 259-267.
1.8

72
1.1```

