Marc Mangel

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6896330/publications.pdf
Version: 2024-02-01

1	The evolutionary advantages of group foraging. Theoretical Population Biology, 1986, 30, 45-75.	0.5	541
2	Towards a Unifield Foraging Theory. Ecology, 1986, 67, 1127-1138.	1.5	478
3	Foraging and Flocking Strategies: Information in an Uncertain Environment. American Naturalist, 1984, 123, 626-641.	1.0	381
4	Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L.. Evolutionary Ecology, 1998, 12, 581-599.	0.5	350
5	Dynamic models in behavioural and evolutionary ecology. Nature, 1988, 332, 29-34.	13.7	340
6	The global contribution of forage fish to marine fisheries and ecosystems. Fish and Fisheries, 2014, 15, 43-64.	2.7	311
7	IMPLEMENTING THE PRECAUTIONARY PRINCIPLE IN FISHERIES MANAGEMENT THROUGH MARINE RES 1998, 8, S72-S78.		276

$8 \quad$ Opposition site selection and clutch size in insects. Journal of Mathematical Biology, 1987, 25, 1-22. 0.8
$9 \quad$ Principles for the Conservation of Wild Living Resources. , 1996, 6, 338-362. 236
Ecology, Conservation, and Public Policy. Annual Review of Ecology, Evolution, and Systematics, 2001,
32, 481-517.
No-take Reserve Networks: Sustaining Fishery Populations and Marine Ecosystems. Fisheries, 1999, 24,
$11-25$.
13 THE BENEFITS OF INDUCED DEFENSES AGAINST HERBIVORES. Ecology, 1997, 78, 1351-1355. 184

Fluctuations of fish populations and the magnifying effects of fishing. Proceedings of the National

3.3

178
Academy of Sciences of the United States of America, 2011, 108, 7075-7080.

15 Life expectancy and reproduction. Nature, 1993, 364, 108-108. 13.7

Egg maturation, egg resorption and the costliness of transient egg limitation in insects. Proceedings25 A perspective on steepness, reference points, and stock assessment. Canadian Journal of Fisheries andA perspective on steepness, reference
Aquatic Sciences, 2013, 70, 930-940.
Reproductive ecology and scientific inference of steepness: a fundamental metric of population dynamics and strategic fisheries management. Fish and Fisheries, 2010, 11, 89-104.
27 Overcoming the Data Crisis in Biodiversity Conservation. Trends in Ecology and Evolution, 2018, 33, 676-688.
2.7

88
4.2

85

28 A Simple Population Estimate Based on Simulation for Capture-Recapture and Capture-Resight Data.

 Ecology, 1989, 70, 1738-1751.1.5

83

> Ten principles from evolutionary ecology essential for effective marine conservation. Ecology and
> Evolution, 2016, 6, 2125-2138.
0.8

83

30 Habitat Loss and Changes in the Speciesâ€Area Relationship. Conservation Biology, 2000, 14, 893-898.
2.4

78

Patchâ€leaving rules for parasitoids with imperfect host discrimination. Ecological Entomology, 1994,
31 19,374-380.
1.1

77
19, 374-380.

Abraham Wald's Work on Aircraft Survivability. Journal of the American Statistical Association, 1984,
79, 259-267.
1.8

72

Evolution of Sizeâ€Dependent Flowering inOnopordum illyricum: A Quantitative Assessment of the Role
1.0

67
33 of Stochastic Selection Pressures. American Naturalist, 1999, 154, 628-651.

Steelhead Life History on California's Central Coast: Insights from a Stateâ€Đependent Model.
0.6

67

37	Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method. PLoS Computational Biology, 2014, 10, e1003828.	1.5	61
38	Stateâ€dependent life history models in a changing (and regulated) environment: steelhead in the California Central Valley. Evolutionary Applications, 2010, 3, 221-243.	1.5	60
39	Using Grizzly Bears to Assess Harvest-Ecosystem Tradeoffs in Salmon Fisheries. PLoS Biology, 2012, 10, el001303.	2.6	60
40	Density-dependent body growth reduces the potential of marine reserves to enhance yields. Journal of Applied Ecology, 2005, 43, 61-69.	1.9	57
41	Growth, telomere dynamics and successful and unsuccessful human aging. Mechanisms of Ageing and Development, 2003, 124, 829-837.	2.2	56
42	A Dynamic State Model of Migratory Behavior and Physiology to Assess the Consequences of Environmental Variation and Anthropogenic Disturbance on Marine Vertebrates. American Naturalist, 2018, 191, E40-E56.	1.0	56
43	Predation-dependent oviposition habitat selection by the mosquito Culiseta longiareolata: a test of competing hypotheses. Ecology Letters, 2002, 6, 35-40.	3.0	54

55 Modeling play: distinguishing between origins and current functions. Adaptive Behavior, 2015, 23,
331-339.

Lifeâ€"history tradeâ€"offs and ecological dynamics in the evolution of longevity. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1143-1150.

Phenotypic Evolutionary Models in Stem Cell Biology: Replacement, Quiescence, and Variability. PLoS ONE, 2008, 3, el591.

Cold snaps, heatwaves, and arthropod growth. Ecological Entomology, 2016, 41, 653-659.
1.1

Maternal age, fecundity, egg quality, and recruitment: linking stock structure to recruitment using
an age-structured Ricker model. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1631-1641.

Adaptive walks on behavioural landscapes and the evolution of optimal behaviour by natural
selection. Evolutionary Ecology, 1991, 5, 30-39.
0.5

36

61 Life history invariants, age at maturity and the ferox trout. Evolutionary Ecology, 1996, 10, 249 -263.
0.5

36

Contrasts in Habitat Characteristics and Life History Patterns of <i>Oncorhynchus mykiss</i> in
62 California's Central Coast and Central Valley. Transactions of the American Fisheries Society, 2012, 141, 747-760.

63 Stateâ€dependent behavioural theory for assessing the fitness consequences of anthropogenic $\begin{aligned} & \text { disturbance on capital and income breeders. Methods in Ecology and Evolution, 2017, 8, 552-560. } \\ & 64 \text { Descriptions of superparasitism by optimal foraging theory, evolutionarily stable strategies and } \\ & \text { quantitative genetics. Evolutionary Ecology, 1992, 6, 152-169. } \\ & 65 \quad \begin{array}{l}\text { Fishing-induced evolution and changing reproductive ecology of fish: the evolution of steepness. } \\ \text { Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1708-1719. }\end{array}\end{aligned}$

A model at the level of the foraging trip for the indirect effects of krill (Euphausia superba) fisheries on krill predators. Ecological Modelling, 1998, 105, 235-256.

State-Dependent Mate-Assessment and Mate-Selection Behavior in Female Threespine Sticklebacks
(Gasterosteus aculeatus, Gasterosteiformes: Gasterosteidae). Ethology, 2001, 107, 545-558.

Spatial and temporal scale of density-dependent body growth and its implications for recruitment,
68 population dynamics and management of stream-dwelling salmonid populations. Reviews in Fish
Biology and Fisheries, 2012, 22, 813-825.
Assessing opportunity and relocation costs of marine protected areas using a behavioural model of
$69 \quad \begin{aligned} & \text { Assessing opportunity and relocation costs of marine protected } \\ & \text { longline fleet dynamics. Fish and Fisheries, 2012, 13, 139-157. }\end{aligned}$
2.7

34

A meta-analysis of fecundity in rockfishes (genus Sebastes). Fisheries Research, 2017, 187, 73-85.
0.9

33

Stateâ€Dependent Migration Timing and Use of Multiple Habitat Types in Anadromous Salmonids.
Transactions of the American Fisheries Society, 2012, 141, 781-794.
0.6

32

73 Withinâ€:and amongâ€population variation in vital rates and population dynamics in a variable

Avoiding tipping points in fisheries management through Gaussian process dynamic programming. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141631.

Trends and Carrying Capacity of Sea Otters in Southeast Alaska. Journal of Wildlife Management, 2019, 83, 1073-1089.

A state-dependent model for assessing the population consequences of disturbance on income-breeding mammals. Ecological Modelling, 2018, 385, 133-144.

Selectivity matters: Rules of thumb for management of plateâ€sized, sexâ€changing fish in the live reef food fish trade. Fish and Fisheries, 2017, 18, 821-836.

Conditioned averages in chemical kinetics. Journal of Chemical Physics, 1981, 75, 704-709.
1.2

The shape of things to come: using models with physiological structure to predict mortality
trajectories. Theoretical Population Biology, 2004, 65, 353-359.

Stochastic Dynamic Programming Illuminates the Link Between Environment, Physiology, and
Evolution. Bulletin of Mathematical Biology, 2015, 77, 857-877.

Using Life History And Persistence Criteria To Prioritize Habitats For Management And Conservation. ,
2006, 16, 797-806.

MULTIPLE HYPOTHESIS TESTING AND THE DECLINING-POPULATION PARADIGM IN STELLER SEA LIONS. , 2008, 18, 1932-1955.

Interacting effects of behavior and oceanography on growth in salmonids with examples for coho
83 salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1219-1230.

84 Genetic and life-history consequences of extreme climate events. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162118.

A framework for assessing the biodiversity and fishery aspects of marine reserves. Journal of Applied Ecology, 2009, 46, 735-742.

Stem cell biology is population biology: differentiation of hematopoietic multipotent progenitors to common lymphoid and myeloid progenitors. Theoretical Biology and Medical Modelling, 2013, 10, 5.
2.1

22

The emotion system promotes diversity and evolvability. Proceedings of the Royal Society B: Biological
Sciences, 2014, 281, 20141096.

The strong connection between forage fish and their predators: A response to Hilborn et al. (2017).
Fisheries Research, 2018, 198, 220-223.

Early oviposition experience affects patch residence time in a foraging parasitoid. Entomologia
Experimentalis Et Applicata, 2001, 98, 123-132.
0.7

18

Modeling optimal responses and fitness consequences in a changing Arctic. Global Change Biology,
2019, 25, 3450-3461.
91 Applying scientific principles in international law on whaling. Science, 2014, 345, 1125-1126. 17

92 Tradeâ€offs between accuracy and interpretability in von <scp>B</scp>ertalanffy randomâ€effects models
Stochastic Dynamics of Interacting Haematopoietic Stem Cell Niche Lineages. PLoS Computational
Biology, 2014, 10, e1003794.

94 Feedback control in planarian stem cell systems. BMC Systems Biology, 2016, 10, 17.and Aquatic Sciences, 2012, 69, 231-246.
Evolutionary optimization and neural network models of behavior. Journal of Mathematical Biology, 1990, 28, 237-56.

Parent-offspring conflict over reproductive timing: ecological dynamics far away and at other times

```
107 Density dependence, lifespan and the evolutionary dynamics of longevity. Theoretical Population
Biology, 2009, 75, 46-55.
```

Asymptotic size and natural mortality of long-lived fish for data poor stock assessments. Fisheries
Research, 2012, 127-128, 45-48.

Threshold levels of generalist predation determine consumer response to resource pulses. Oikos, 2015, 124, 1436-1443.

Reference Points for Optimal Yield: A Framework for Assessing Economic, Conservation, and
111 Sociocultural Tradeoffs in Ecosystem-Based Fishery Management. Coastal Management, 2016, 44,
$1.0 \quad 10$
517-528.
Stationary distribution of population size inTribolium. Bulletin of Mathematical Biology, 1989, 51,
625-638.

113 A dynamic habitat selection game. Mathematical Biosciences, 1990, 100, 241-248.
$0.9 \quad 9$

Scientific inference and experiment in Ecosystem Based Fishery Management, with application to
Steller sea lions in the Bering Sea and Western Gulf of Alaska. Marine Policy, 2010, 34, 836-843.

Linking physiological approaches to marine vertebrate conservation: using sex steroid hormone
determinations in demographic assessments. , 2014, 2, cot035-cot035.

Climate variability and multi-scale assessment of the krill preyscape near the north Antarctic
Peninsula. Polar Biology, 2017, 40, 697-711.

117 Operationalizing triple bottom line harvest strategies. ICES Journal of Marine Science, 2021, 78, 731-742.
1.2

Regulatory Mechanisms and Information Processing in Uncertain Fisheries. Marine Resource
Economics, 1985, 1, 389-418.

119 Linking food availability, body growth and survival in the black-legged kittiwake Rissa tridactyla.
Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 94, 192-200.
0.6

Thermal Potential for Steelhead Life History Expression in a Southern California Alluvial River.
Transactions of the American Fisheries Society, 2015, 144, 258-273.
amei: An<i>R</i>Package for the Adaptive Management of Epidemiological Interventions.
Journal of Statistical Software, 2010, 36, .

Applied Mathematicians and Naval Operators. SIAM Review, 1982, 24, 289-300.
4.2

123 Weapon acquisition with target uncertainty. Naval Research Logistics Quarterly, 1985, 32, 567-588.
$0.4 \quad 7$

Optimising harvest strategies over multiple objectives and stakeholder preferences. Ecological
Modelling, 2020, 435, 109243.

125 Invariant Ratios Vs. Dimensionless Ratios. Science, 2005, 310, 1426-1427.
6.0

```
Intercohort size structure dynamics of fire salamander larvae in ephemeral habitats: a mesocosm
experiment. Oecologia, 2015, 179, 425-433.
```

A latitudinal gradient in thermal transgenerational plasticity and a test of theory. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210797.

129 The evolutionary ecology of stem cells and their niches $\hat{a} €^{\prime \prime}$ the time is now. Oikos, 2007, 116, 1779-1781.
1.2

Size-conditional smolting and the response of Carmel River steelhead to two decades of conservation efforts. PLoS ONE, 2017, 12, e0188971.

Propensity for Risk in Reproductive Strategy Affects Susceptibility to Anthropogenic Disturbance. American Naturalist, 2020, 196, E71-E87.

Density-independent mortality at early life stages increases the probability of overlooking an underlying stockâ€"recruitment relationship. ICES Journal of Marine Science, 2021, 78, 2193-2203.

Stochastic dynamic programming: An approach for modelling the population consequences of disturbance due to lost foraging opportunities. Proceedings of Meetings on Acoustics, 2016, , .

Prevention Versus Remediation in Resistance Management. ACS Symposium Series, 1996, , 169-186.
0.5

A Framework for Exploring the Role of Bioeconomics on Observed Fishing Patterns and Ecosystem
Dynamics. Coastal Management, 2016, 44, 529-546.

Diffusion theory of reaction rates for multiple potential barriers. Journal of Chemical Physics, 1981, 75, 5969-5971.

Principles for the conservation of wild living resources. Environment and Development Economics,
1997, 2, 39-110.

138 The Important Role of Theory in Conservation Biology. Conservation Biology, 2002, 16, 843-844.
2.4

3

A generalized perturbation approach for exploring stock recruitment relationships. Theoretical Ecology, 2015, 8, 1-13.

140 Know your organism, know your dataâ€. ICES Journal of Marine Science, 2017, 74, 1237-1248.
1.2

Matrix methods for stochastic dynamic programming in ecology and evolutionary biology. Methods
in Ecology and Evolution, 2019, 10, 1952-1961.

Required reading for (ecological) battles. Trends in Ecology and Evolution, 2001, 16, 110-111.

Sidney Holt on principles for the conservation of wild living resources, whaling in the Antarctic, and

1.2 4.2

2

Four examples and a metaphor. , 0, , 1-19.

