Devin F R Doud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/689627/publications.pdf

Version: 2024-02-01

12 papers 2,065 citations

1040056 9 h-index 1199594 12 g-index

12 all docs 12 docs citations

times ranked

12

3319 citing authors

#	Article	IF	CITATIONS
1	Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME Journal, 2020, 14, 659-675.	9.8	69
2	Novel approaches in function-driven single-cell genomics. FEMS Microbiology Reviews, 2017, 41, 538-548.	8.6	24
3	The trajectory of microbial single-cell sequencing. Nature Methods, 2017, 14, 1045-1054.	19.0	120
4	Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 2017, 35, 725-731.	17.5	1,512
5	Optimal Intensity and Biomass Density for Biofuel Production in a Thin-Light-Path Photobioreactor. Environmental Science & Env	10.0	20
6	An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosensors and Bioelectronics, 2014, 62, 320-324.	10.1	141
7	In Situ UV Disinfection of a Waveguide-Based Photobioreactor. Environmental Science & Emp; Technology, 2014, 48, 11521-11526.	10.0	3
8	Toward Electrosynthesis with Uncoupled Extracellular Electron Uptake and Metabolic Growth: Enhancing Current Uptake with $\langle i \rangle$ Rhodopseudomonas palustris $\langle i \rangle$. Environmental Science and Technology Letters, 2014, 1, 351-355.	8.7	36
9	Hollow fibre membrane arrays for CO ₂ delivery in microalgae photobioreactors. RSC Advances, 2014, 4, 1460-1468.	3.6	8
10	In situ hollow fiber membrane facilitated CO2 delivery to a cyanobacterium for enhanced productivity. RSC Advances, 2013, 3, 13203.	3.6	9
11	Slab waveguide photobioreactors for microalgae based biofuel production. Lab on A Chip, 2012, 12, 3740.	6.0	35
12	Quantitative Correlation of Absolute Hydroxyl Radical Rate Constants with Non-Isolated Effluent Organic Matter Bulk Properties in Water. Environmental Science & Environmental Science & 2008, 42, 5924-5930.	10.0	88