List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6896208/publications.pdf

Version: 2024-02-01

ALAIN F TISSIED

#	Article	IF	CITATIONS
1	Multiple Independent Defective Suppressor-mutator Transposon Insertions in Arabidopsis: A Tool for Functional Genomics. Plant Cell, 1999, 11, 1841-1852.	6.6	353
2	Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential forArabidopsisembryo maturation. Plant Journal, 2002, 29, 225-235.	5.7	333
3	ATR Regulates a G2-Phase Cell-Cycle Checkpoint in <i>Arabidopsis thaliana</i> . Plant Cell, 2004, 16, 1091-1104.	6.6	286
4	A Novel Pathway for Sesquiterpene Biosynthesis from <i>Z,Z</i> -Farnesyl Pyrophosphate in the Wild Tomato <i>Solanum habrochaites</i> Â. Plant Cell, 2009, 21, 301-317.	6.6	273
5	<i>AtATM</i> Is Essential for Meiosis and the Somatic Response to DNA Damage in Plants[W]. Plant Cell, 2003, 15, 119-132.	6.6	267
6	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
7	Glandular trichomes: what comes after expressed sequence tags?. Plant Journal, 2012, 70, 51-68.	5.7	213
8	Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20124-20129.	7.1	200
9	Function Search in a Large Transcription Factor Gene Family in Arabidopsis: Assessing the Potential of Reverse Genetics to Identify Insertional Mutations in R2R3 MYB Genes. Plant Cell, 1999, 11, 1827-1840.	6.6	151
10	An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods, 2012, 8, 47.	4.3	150
11	Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Phytochemistry, 2019, 161, 149-162.	2.9	148
12	Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites. Plant Cell, 2017, 29, 960-983.	6.6	143
13	Characterization of two genes for the biosynthesis of the labdane diterpene <i>Z</i> â€abienol in tobacco (<i>Nicotiana tabacum)</i> glandular trichomes. Plant Journal, 2012, 72, 1-17.	5.7	133
14	Evolution of a Complex Locus for Terpene Biosynthesis in <i>Solanum</i> Â Â. Plant Cell, 2013, 25, 2022-2036.	6.6	132
15	Glandular trichomes: microâ€organs with model status?. New Phytologist, 2020, 225, 2251-2266.	7.3	131
16	Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nature Communications, 2016, 7, 12942.	12.8	122
17	Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathologica, 2013, 126, 763-780.	7.7	106
18	Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry, 2014, 101, 52-64.	2.9	106

#	Article	IF	CITATIONS
19	Plant Volatiles: Going â€~In' but not â€~Out' of Trichome Cavities. Trends in Plant Science, 2017, 22, 93	0-93888	97
20	The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biology, 2015, 15, 289.	3.6	94
21	CYP725A4 from Yew Catalyzes Complex Structural Rearrangement of Taxa-4(5),11(12)-diene into the Cyclic Ether 5(12)-Oxa-3(11)-cyclotaxane. Journal of Biological Chemistry, 2008, 283, 6067-6075.	3.4	89
22	Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. ELife, 2020, 9, .	6.0	89
23	Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Molecular Biology, 2010, 73, 673-685.	3.9	75
24	High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods, 2013, 9, 46.	4.3	73
25	Discovering Regulated Metabolite Families in Untargeted Metabolomics Studies. Analytical Chemistry, 2016, 88, 8082-8090.	6.5	72
26	Natural products – modifying metabolite pathways in plants. Biotechnology Journal, 2013, 8, 1159-1171.	3.5	70
27	Towards Elucidating Carnosic Acid Biosynthesis in Lamiaceae: Functional Characterization of the Three First Steps of the Pathway in Salvia fruticosa and Rosmarinus officinalis. PLoS ONE, 2015, 10, e0124106.	2.5	67
28	Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry. Atmospheric Chemistry and Physics, 2016, 16, 277-292.	4.9	56
29	An ATM homologue from Arabidopsis thaliana: complete genomic organisation and expression analysis. Nucleic Acids Research, 2000, 28, 1692-1699.	14.5	54
30	Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family. Frontiers in Plant Science, 2018, 9, 255.	3.6	53
31	Evolution of root-specific carotenoid precursor pathways for apocarotenoid signal biogenesis. Plant Science, 2015, 233, 1-10.	3.6	52
32	A library of synthetic transcription activatorâ€like effectorâ€activated promoters for coordinated orthogonal geneÂexpression in plants. Plant Journal, 2015, 82, 707-716.	5.7	52
33	The inconspicuous gatekeeper: endophytic <i>Serendipita vermifera</i> acts as extended plant protection barrier in the rhizosphere. New Phytologist, 2019, 224, 886-901.	7.3	52
34	A functional OGG1 homologue from Arabidopsis thaliana. Molecular Genetics and Genomics, 2001, 265, 293-301.	2.1	46
35	<i>Arabidopsis thaliana</i> isoprenyl diphosphate synthases produce the C ₂₅ intermediate geranylfarnesyl diphosphate. Plant Journal, 2015, 84, 847-859.	5.7	46
36	Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. Journal of Biological Chemistry, 2017, 292, 15758-15776.	3.4	44

#	Article	IF	CITATIONS
37	Natural products – learning chemistry from plants. Biotechnology Journal, 2014, 9, 326-336.	3.5	43
38	A Snapshot of the Plant Glycated Proteome. Journal of Biological Chemistry, 2016, 291, 7621-7636.	3.4	43
39	Cloning and Characterization of an <i>Arabidopsis thaliana</i> Topoisomerase I Gene. Plant Physiology, 1992, 99, 1493-1501.	4.8	40
40	A 1-phytase type III effector interferes with plant hormone signaling. Nature Communications, 2017, 8, 2159.	12.8	40
41	Activity of the yeast FLP recombinase in Arabidopsis. Plant Molecular Biology, 1995, 28, 1127-1132.	3.9	38
42	Integrated omics analyses of retrograde signaling mutant delineate interrelated stressâ€response strata. Plant Journal, 2017, 91, 70-84.	5.7	36
43	Multiple Independent Defective Suppressor-mutator Transposon Insertions in Arabidopsis: A Tool for Functional Genomics. Plant Cell, 1999, 11, 1841.	6.6	35
44	An UPLC-MS/MS Method for the Simultaneous Identification and Quantitation of Cell Wall Phenolics in Brassica napus Seeds. Journal of Agricultural and Food Chemistry, 2013, 61, 1219-1227.	5.2	29
45	Autofluorescence as a Signal to Sort Developing Glandular Trichomes by Flow Cytometry. Frontiers in Plant Science, 2016, 7, 949.	3.6	29
46	Plant secretory structures: more than just reaction bags. Current Opinion in Biotechnology, 2018, 49, 73-79.	6.6	28
47	Initiation of ER Body Formation and Indole Glucosinolate Metabolism by the Plastidial Retrograde Signaling Metabolite, MEcPP. Molecular Plant, 2017, 10, 1400-1416.	8.3	26
48	Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit. Metabolic Engineering, 2018, 47, 271-278.	7.0	26
49	CYP76 Oxidation Network of Abietane Diterpenes in Lamiaceae Reconstituted in Yeast. Journal of Agricultural and Food Chemistry, 2019, 67, 13437-13450.	5.2	25
50	Pi starvation-dependent regulation of ethanolamine metabolism by phosphoethanolamine phosphatase PECP1 in Arabidopsis roots. Journal of Experimental Botany, 2018, 69, 467-481.	4.8	24
51	Reverse Transcription of 18S rRNA with Poly(dT)18 and Other Homopolymers. Plant Molecular Biology Reporter, 2013, 31, 55-63.	1.8	23
52	QTL Mapping of the Shape of Type VI Glandular Trichomes in Tomato. Frontiers in Plant Science, 2018, 9, 1421.	3.6	23
53	The scarecrowâ€like transcription factor SISCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (<i>Solanum lycopersicum</i>). Plant Journal, 2021, 107, 1102-1118.	5.7	22
54	Isoprenoid and Metabolite Profiling of Plant Trichomes. Methods in Molecular Biology, 2014, 1153, 189-202.	0.9	18

#	Article	IF	CITATIONS
55	Medicago TERPENE SYNTHASE 10 Is Involved in Defense Against an Oomycete Root Pathogen. Plant Physiology, 2019, 180, 1598-1613.	4.8	17
56	Purification and properties of DNA topoisomerase I from broccoli. Plant Molecular Biology, 1992, 18, 865-871.	3.9	16
57	Trichome Specific Expression: Promoters and Their Applications. , 0, , .		16
58	A single cytochrome P450 oxidase from <i>Solanum habrochaites</i> sequentially oxidizes 7â€ <i>epi</i> â€ɛingiberene to derivatives toxic to whiteflies and various microorganisms. Plant Journal, 2021, 105, 1309-1325.	5.7	15
59	Split-TALE: A TALE-Based Two-Component System for Synthetic Biology Applications in Planta. Plant Physiology, 2019, 179, 1001-1012.	4.8	14
60	Trichomes form genotype-specific microbial hotspots in the phyllosphere of tomato. Environmental Microbiomes, 2020, 15, 17.	5.0	14
61	Function Search in a Large Transcription Factor Gene Family in Arabidopsis: Assessing the Potential of Reverse Genetics to Identify Insertional Mutations in R2R3 MYB Genes. Plant Cell, 1999, 11, 1827.	6.6	13
62	Libraries of Synthetic TALE-Activated Promoters. Methods in Enzymology, 2016, 576, 361-378.	1.0	8
63	Reverse Genetics in Plants. Current Genomics, 2001, 2, 269-284.	1.6	6
64	Control of resource allocation between primary and specialized metabolism in glandular trichomes. Current Opinion in Plant Biology, 2022, 66, 102172.	7.1	6
65	The Genetic Complexity of Type-IV Trichome Development Reveals the Steps towards an Insect-Resistant Tomato. Plants, 2022, 11, 1309.	3.5	6
66	A single <scp>promoterâ€TALE</scp> system for tissueâ€specific and tuneable expression of multiple genes in rice. Plant Biotechnology Journal, 2022, 20, 1786-1806.	8.3	6
67	Tobacco Trichomes as a Platform for Terpenoid Biosynthesis Engineering. , 2012, , 271-283.		5
68	At4g29530 is a phosphoethanolamine phosphatase homologous to PECP1 with a role in flowering time regulation. Plant Journal, 2021, 107, 1072-1083.	5.7	5
69	Generation of dTALEs and Libraries of Synthetic TALE-Activated Promoters for Engineering of Gene Regulatory Networks in Plants. Methods in Molecular Biology, 2017, 1629, 185-204.	0.9	5
70	Consumers' Willingness to Buy CRISPR Gene-Edited Tomatoes: Evidence from a Choice Experiment Case Study in Germany. Sustainability, 2022, 14, 971.	3.2	5
71	Purification and Characterization of a DNA Strand Transferase from Broccoli. Plant Physiology, 1995, 108, 379-386.	4.8	3
72	Glycation of Plant Proteins under Environmental Stress — Methodological Approaches, Potential Mechanisms and Biological Role. , 2016, , .		2

#	Article	IF	CITATIONS
73	Plant Genes and Proteins Involved in Homologous Recombination. , 1994, , 157-166.		0