
James D Mcmillan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/68959/publications.pdf Version: 2024-02-01

IAMES D MCMILLAN

#	Article	IF	CITATIONS
1	Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 2020, 147, 111906.	8.8	101
2	Potential synergies of dropâ€in biofuel production with further coâ€processing at oil refineries. Biofuels, Bioproducts and Biorefining, 2019, 13, 760-775.	3.7	128
3	Recovery of Fuel-Precursor Lipids from Oleaginous Yeast. ACS Sustainable Chemistry and Engineering, 2018, 6, 2921-2931.	6.7	29
4	Dropâ€in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I. Biofuels, Bioproducts and Biorefining, 2017, 11, 344-362.	3.7	69
5	A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Research, 2017, 24, 261-264.	4.6	87
6	Thinking big: towards ideal strains and processes for largeâ€scale aerobic biofuels production. Microbial Biotechnology, 2017, 10, 40-42.	4.2	15
7	Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate. Bioresource Technology, 2017, 243, 474-480.	9.6	18
8	Assessing pretreatment reactor scaling through empirical analysis. Biotechnology for Biofuels, 2016, 9, 213.	6.2	16
9	Assessing the Protein Concentration in Commercial Enzyme Preparations. Methods in Molecular Biology, 2012, 908, 169-180.	0.9	2
10	Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnology for Biofuels, 2011, 4, 29.	6.2	63
11	Calculating sugar yields in high solids hydrolysis of biomass. Bioresource Technology, 2011, 102, 2897-2903.	9.6	63
12	Comparative study of corn stover pretreated by dilute acid and cellulose solventâ€based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering, 2009, 103, 715-724.	3.3	191
13	Model-Based Fed-Batch for High-Solids Enzymatic Cellulose Hydrolysis. Applied Biochemistry and Biotechnology, 2009, 152, 88-107.	2.9	196
14	Rheology of corn stover slurries at high solids concentrations – Effects of saccharification and particle size. Bioresource Technology, 2009, 100, 925-934.	9.6	174
15	Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technology, 2008, 99, 8940-8948.	9.6	280
16	How biotech can transform biofuels. Nature Biotechnology, 2008, 26, 169-172.	17.5	984
17	Methodological analysis for determination of enzymatic digestibility of cellulosic materials. Biotechnology and Bioengineering, 2007, 96, 188-194.	3.3	27
18	Control of High-Solids Saccharification using a Model-Based Methodology for Fed-Batch Operation. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 177-182.	0.4	0

JAMES D MCMILLAN

#	Article	IF	CITATIONS
19	Measurement and Analysis of Intracellular ATP Levels in Metabolically Engineered Zymomonas mobilis Fermenting Glucose and Xylose Mixtures. Biotechnology Progress, 2006, 22, 359-368.	2.6	16
20	Adsorptive membranes vs. resins for acetic acid removal from biomass hydrolysates. Desalination, 2006, 193, 361-366.	8.2	45
21	Catalyst Transport in Corn Stover Internodes Elucidating Transport Mechanisms Using Direct Blue-I. Applied Biochemistry and Biotechnology, 2006, 130, 509-527.	2.9	16
22	Kinetic modeling to optimize pentose fermentation inZymomonas mobilis. Biotechnology and Bioengineering, 2006, 94, 273-295.	3.3	45
23	Catalyst Transport in Corn Stover Internodes. , 2006, , 509-527.		3
24	Introduction to the proceedings of the twenty-seventh symposium on biotechnology for fuels and chemicals. Applied Biochemistry and Biotechnology, 2006, 132, iii-viii.	2.9	0
25	Introduction to the Proceedings of the Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, 2006, 129, iii-viii.	2.9	Ο
26	Introduction to the Proceedings of the Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, 2006, 130, iii-viii.	2.9	1
27	Development and Validation of a Kinetic Model for Enzymatic Saccharification of Lignocellulosic Biomass. Biotechnology Progress, 2004, 20, 698-705.	2.6	238
28	Dilute-Sulfuric Acid Pretreatment of Corn Stover in Pilot-Scale Reactor: Investigation of Yields, Kinetics, and Enzymatic Digestibilities of Solids. Applied Biochemistry and Biotechnology, 2003, 105, 69-86.	2.9	378
29	Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technology, 2003, 88, 17-25.	9.6	284
30	Dilute-Sulfuric Acid Pretreatment of Corn Stover in Pilot-Scale Reactor. , 2003, , 69-85.		45
31	Carbon Mass Balance Evaluation of Cellulase Production on Soluble and Insoluble Substrates. Biotechnology Progress, 2002, 18, 1400-1407.	2.6	13
32	Characterization of Heterologous and Native Enzyme Activity Profiles in Metabolically Engineered Zymomonas mobilis Strains During Batch Fermentation of Glucose and Xylose Mixtures. Applied Biochemistry and Biotechnology, 2002, 98-100, 341-356.	2.9	26
33	Use of Measurement Uncertainty Analysis to Assess Accuracy of Carbon Mass Balance Closure for a Cellulase Production Process. Applied Biochemistry and Biotechnology, 2002, 98-100, 509-524.	2.9	7
34	Influence Of Operating Conditions and Vessel Size On Oxygen Transfer During Cellulase Production. Applied Biochemistry and Biotechnology, 2001, 91-93, 627-642.	2.9	22
35	The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzyme and Microbial Technology, 2000, 27, 240-247.	3.2	103
36	Interpolated parameter functions for neural network models. Computers and Chemical Engineering, 2000, 24, 2545-2553.	3.8	12

JAMES D MCMILLAN

#	Article	IF	CITATIONS
37	Continuous Fermentation Studies with Xylose-Utilizing Recombinant Zymomonas mobilis. Applied Biochemistry and Biotechnology, 2000, 84-86, 295-310.	2.9	17
38	Improvements in Titer, Productivity, and Yield Using Solka-Floc for Cellulase Production. Applied Biochemistry and Biotechnology, 2000, 84-86, 859-874.	2.9	20
39	Fermentation Performance Characteristics of a Prehydrolyzate-Adapted Xylose-Fermenting Recombinant Zymomonas in Batch and Continuous Fermentations. Applied Biochemistry and Biotechnology, 1999, 77, 191-204.	2.9	39
40	Enzyme Production, Growth, and Adaptation of T. reesei Strains QM9414, L-27, RL-P37, and Rut C-30 to Conditioned Yellow Poplar Sawdust Hydrolysate(Scientific Note). Applied Biochemistry and Biotechnology, 1999, 77, 293-310.	2.9	17
41	Simultaneous Saccharification and Cofermentation of Dilute-Acid Pretreated Yellow Poplar Hardwood to Ethanol Using Xylose-Fermenting Zymomonas mobilis. Applied Biochemistry and Biotechnology, 1999, 79, 649-666.	2.9	75
42	Mathematical modeling and optimization of cellulase protein production usingTrichoderma reesei RL-P37. , 1999, 66, 1-16.		44
43	Continuous culture studies of xylose-fermentingZymomonas mobilis. Applied Biochemistry and Biotechnology, 1998, 70-72, 353-367.	2.9	33
44	Advanced Bioethanol Production Technologies: A Perspective. ACS Symposium Series, 1997, , 2-45.	0.5	65
45	Identification of inhibitory components toxic toward zymomonas mobilis CP4(pZB5) xylose fermentation. Applied Biochemistry and Biotechnology, 1997, 67, 185-198.	2.9	119
46	Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinantZymomonas. Applied Biochemistry and Biotechnology, 1997, 63-65, 269-286.	2.9	35
47	Evaluation of PTMSP membranes in achieving enhanced ethanol removal from fermentations by pervaporation. Applied Biochemistry and Biotechnology, 1997, 63-65, 469-482.	2.9	45
48	Bioethanol production: Status and prospects. Renewable Energy, 1997, 10, 295-302.	8.9	156
49	Introduction to the Proceedings of the Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, 1996, 131, iii-viii.	2.9	1
50	Introduction to the Proceedings of the Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, 1996, 131, iii-viii.	2.9	0
51	Conversion of Hemicellulose Hydrolyzates to Ethanol. ACS Symposium Series, 1994, , 411-437.	0.5	81
52	High-yield shake-flask fermentation of xylose to ethanol. Applied Biochemistry and Biotechnology, 1994, 45-46, 509-514.	2.9	15
53	Arabinose utilization by xylose-fermenting yeasts and fungi. Applied Biochemistry and Biotechnology, 1994, 45-46, 569-584.	2.9	71
54	Pretreatment of Lignocellulosic Biomass. ACS Symposium Series, 1994, , 292-324.	0.5	321

#	Article	IF	CITATIONS
55	Mechanisms of Oxygen Transfer Enhancement during Submerged Cultivation in Perfluorochemical-in-Water Dispersions. Annals of the New York Academy of Sciences, 1990, 589, 283-300.	3.8	39
56	Enhanced Oxygen Transfer Using Oil-in-Water Dispersions. Annals of the New York Academy of Sciences, 1987, 506, 569-582.	3.8	51