Andrew J Veale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6895643/publications.pdf

Version: 2024-02-01

687363 580821 28 902 13 25 citations h-index g-index papers 30 30 30 1692 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Genomics detects population structure within and between ocean basins in a circumpolar seabird: The whiteâ€chinned petrel. Molecular Ecology, 2019, 28, 4552-4572.	3.9	21
2	Comparative transcriptomic analysis of a wing-dimorphic stonefly reveals candidate wing loss genes. EvoDevo, 2019, 10, 21.	3.2	18
3	Ecological gradients drive insect wing loss and speciation: The role of the alpine treeline. Molecular Ecology, 2019, 28, 3141-3150.	3.9	27
4	First complete mitochondrial genome of a Gripopterygid stonefly from the sub-order Antarctoperlaria: Zelandoperla fenestrata. Mitochondrial DNA Part B: Resources, 2019, 4, 886-888.	0.4	2
5	Using te reo MÄori and ta re Moriori in taxonomy. New Zealand Journal of Ecology, 2019, 43, .	1.1	9
6	The genomic ancestry, landscape genetics and invasion history of introduced mice in New Zealand. Royal Society Open Science, 2018, 5, 170879.	2.4	21
7	Genotyping-by-sequencing supports a genetic basis for wing reduction in an alpine New Zealand stonefly. Scientific Reports, 2018, 8, 16275.	3.3	17
8	Population Connectivity and Traces of Mitochondrial Introgression in New Zealand Black-Billed Gulls (Larus bulleri). Genes, 2018, 9, 544.	2.4	6
9	Small mustelids in New Zealand: invasion ecology in a different world. , 2018, , .		1
10	An ancient selective sweep linked to reproductive life history evolution in sockeye salmon. Scientific Reports, 2017, 7, 1747.	3.3	44
11	Genomic Changes Associated with Reproductive and Migratory Ecotypes in Sockeye Salmon (Oncorhynchus nerka). Genome Biology and Evolution, 2017, 9, 2921-2939.	2.5	38
12	Sockeye salmon repatriation leads to population reâ€establishment and rapid introgression with native kokanee. Evolutionary Applications, 2016, 9, 1301-1311.	3.1	24
13	What can the geographic distribution of mtDNA haplotypes tell us about the invasion of New Zealand by house mice Mus musculus?. Biological Invasions, 2016, 18, 1551-1565.	2.4	12
14	The complete mitochondrial genomes of two chiton species (<i>Sypharochiton) Tj ETQq0 0 0 rgBT /Overlock 10 sequencing. Mitochondrial DNA, 2016, 27, 537-538.</i>	Tf 50 227 0.6	Td (pelliserpe 12
15	Sap flow of the southern conifer, Agathis australis during wet and dry summers. Trees - Structure and Function, 2016, 30, 19-33.	1.9	15
16	An invasive nonâ€native mammal population conserves genetic diversity lost from its native range. Molecular Ecology, 2015, 24, 2156-2163.	3.9	9
17	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469
18	The effects of mice on stoats in southern beech forests. Austral Ecology, 2015, 40, 32-39.	1.5	7

#	Article	IF	CITATIONS
19	Unwelcome visitors: employing forensic methodologies to inform the stoat (<i>Mustela erminea</i>) incursion response plan on Kapiti Island. New Zealand Journal of Zoology, 2014, 41, 1-9.	1.1	12
20	Measuring connectivity of invasive stoat populations to inform conservation management. Wildlife Research, 2014, 41, 395.	1.4	4
21	Swimming capabilities of stoats and the threat to inshore sanctuaries. Biological Invasions, 2014, 16, 987-995.	2.4	9
22	Using genetic techniques to quantify reinvasion, survival and <i>in situ</i> breeding rates during control operations. Molecular Ecology, 2013, 22, 5071-5083.	3.9	32
23	Observations of stoats (<i>Mustela erminea</i>) swimming. New Zealand Journal of Zoology, 2013, 40, 166-169.	1.1	11
24	The population genetic structure of the waratah anemone (<i>Actinia tenebrosa</i>) around New Zealand. New Zealand Journal of Marine and Freshwater Research, 2012, 46, 523-536.	2.0	26
25	Genetic population assignment reveals a long-distance incursion to an island by a stoat (Mustela) Tj ETQq $1\ 1\ 0.7$	'843]4 rgl 2.4	3T /Overlock 23
26	Phylogeography of the snakeskin chiton Sypharochiton pelliserpentis (Mollusca: Polyplacophora) around New Zealand: are seasonal near-shore upwelling events a dynamic barrier to gene flow?. Biological Journal of the Linnean Society, 2011, 104, 552-563.	1.6	30
27	Genetic diversity and differentiation in the leaf litter weevil Geochus politus across an urban-rural gradient. New Zealand Journal of Ecology, 0, , .	1.1	1
28	The introduction and diversity of commensal rodents in 19th century Australasia. Biological Invasions, 0 , 1 .	2.4	1