Jin Goo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6895600/publications.pdf

Version: 2024-02-01

	567281	477307
880	15	29
citations	h-index	g-index
2.6	0.6	1.654
36	36	1654
docs citations	times ranked	citing authors
	citations 36	880 15 citations h-index 36 36

#	Article	IF	CITATIONS
1	A New Family of Perovskite Catalysts for Oxygen-Evolution Reaction in Alkaline Media: BaNiO ₃ and BaNi _{0.83} O _{2.5} . Journal of the American Chemical Society, 2016, 138, 3541-3547.	13.7	204
2	Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cmâ^²2 at 550 °C. Natu Communications, 2014, 5, 4045.	ıre 12.8	193
3	Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc–Air Battery Systems. ACS Applied Materials & Interfaces, 2016, 8, 26298-26308.	8.0	69
4	Replacement of Ca by Ni in a Perovskite Titanate to Yield a Novel Perovskite Exsolution Architecture for Oxygenâ€Evolution Reactions. Advanced Energy Materials, 2020, 10, 1903693.	19.5	53
5	Durable and High-Performance Direct-Methane Fuel Cells with Coke-Tolerant Ceria-Coated Ni Catalysts at Reduced Temperatures. Electrochimica Acta, 2016, 191, 677-686.	5.2	29
6	Fabrication of anode-supported tubular Ba(Zr0.1Ce0.7Y0.2)O3â~δ cell for intermediate temperature solid oxide fuel cells. Ceramics International, 2014, 40, 1513-1518.	4.8	26
7	Performance evaluation of anode-supported Gd0.1Ce0.9O1.95 cell with electrospun La0.6Sr0.4Co0.2Fe0.8O3â~Î-Gd0.1Ce0.9O1.95 cathode. Electrochimica Acta, 2013, 108, 356-360.	5.2	23
8	Nano-Composite Ni-Gd0.1Ce0.9O1.95 Anode Functional Layer for Low Temperature Solid Oxide Fuel Cells. Electrochimica Acta, 2014, 129, 100-106.	5.2	22
9	Effects of Microwave Treatment on Carbon Electrode for Vanadium Redox Flow Battery. ChemElectroChem, 2015, 2, 872-876.	3.4	22
10	Effects of 8mol% yttria-stabilized zirconia with copper oxide on solid oxide fuel cell performance. Ceramics International, 2015, 41, 7982-7988.	4.8	22
11	Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells. Electrochimica Acta, 2016, 220, 29-35.	5.2	22
12	Harnessing Strong Metal–Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 12140-12148.	8.0	19
13	A novel cathodic electrolyte based on H2C2O4 for a stable vanadium redox flow battery with high charge–discharge capacities. RSC Advances, 2013, 3, 21347.	3.6	18
14	Electrochemical characteristics of electrospun La0.6Sr0.4Co0.2Fe0.8O3â~Î-Gd0.1Ce0.9O1.95 cathode. Ceramics International, 2014, 40, 8053-8060.	4.8	17
15	Direct methane fuel cell with La2Sn2O7–Ni–Gd0.1Ce0.9O1.95 anode and electrospun La0.6Sr0.4Co0.2Fe0.8O3â~δ–Gd0.1Ce0.9O1.95 cathode. RSC Advances, 2013, 3, 11816.	3.6	15
16	Platinum catalysts protected by N-doped carbon for highly efficient and durable polymer-electrolyte membrane fuel cells. Electrochimica Acta, 2016, 193, 191-198.	5.2	14
17	Characteristics of Ba(Zr0.1Ce0.7Y0.2)O3-Î' nano-powders synthesized by different wet-chemical methods for solid oxide fuel cells. Ceramics International, 2018, 44, 433-437.	4.8	14
18	Synthesis and application of hexagonal perovskite BaNiO3 with quadrivalent nickel under atmospheric and low-temperature conditions. Chemical Communications, 2016, 52, 10731-10734.	4.1	13

#	Article	IF	Citations
19	Application of GDC-YDB bilayer and LSM-YDB cathode for intermediate temperature solid oxide fuel cells. Journal of Electroceramics, 2013, 31, 231-237.	2.0	11
20	Use of Interplay between Aâ€Site Nonâ€Stoichiometry and Hydroxide Doping to Deliver Novel Protonâ€Conducting Perovskite Oxides. Advanced Energy Materials, 2021, 11, 2101337.	19.5	11
21	Synthesis of Yttria-Doped Bismuth Oxide Powder by Carbonate Coprecipitation for IT-SOFC Electrolyte. Journal of Nanoscience and Nanotechnology, 2011, 11, 820-823.	0.9	9
22	Next-generation flexible solid oxide fuel cells with high thermomechanical stability. Journal of Materials Chemistry A, 2018, 6, 18018-18024.	10.3	9
23	Nanostructured carbons containing FeNi/NiFe ₂ O ₄ supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions. RSC Advances, 2019, 9, 36586-36599.	3.6	9
24	Effects of dispersed copper nanoparticles on Ni-ceria based dry methanol fuelled low temperature solid oxide fuel cells. RSC Advances, 2019, 9, 6320-6327.	3.6	8
25	Physical and electrochemical properties of (La0.3Sr0.7)0.93TiO3–Î′ synthesized by Pechini method as an anode material for solid oxide fuel cells. Journal of Sol-Gel Science and Technology, 2014, 69, 148-154.	2.4	6
26	Effects of Fe2O3 doping on structural and electrical properties of 8Âmol% yttria-stabilized zirconia electrolyte for solid oxide fuel cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 3208-3214.	2.2	5
27	Perovskites: Replacement of Ca by Ni in a Perovskite Titanate to Yield a Novel Perovskite Exsolution Architecture for Oxygenâ€Evolution Reactions (Adv. Energy Mater. 10/2020). Advanced Energy Materials, 2020, 10, 2070044.	19.5	4
28	Role of Nitrogenâ€Doped Carbon Nanofibers Inside Polymer Membranes for Enhancing Fuel Cell Performance. Energy Technology, 2018, 6, 998-1002.	3.8	3
29	One-step fabrication of surface-decorated inorganic nanowires via single-nozzle electrospinning. Ceramics International, 2018, 44, 11858-11861.	4.8	3
30	Low-temperature co-firing process of solid oxide fuel cells by a trace of copper. International Journal of Hydrogen Energy, 2016, 41, 4792-4798.	7.1	2
31	Coke-tolerant La2Sn2O7-Ni-Gd0.1Ce0.9O1.95 composite anode for direct methane-fueled solid oxide fuel cells. Journal of Electroceramics, 2018, 40, 323-331.	2.0	2
32	Synthesis and Characterization of Cu- and Co-Doped Bi4V2O11for Intermediate-Temperature Solid Oxide Fuel Cell Electrolytes by Carbonate Coprecipitation. Japanese Journal of Applied Physics, 2011, 50, 01BE19.	1.5	1
33	Coprecipitation Synthesis and Characterization of La _{0.8} Sr0.2Ga _{0.8â^'< >x} N for Intermediate Temperature Solid Oxide Fuel Cell Electrolytes. Journal of Nanoscience and Nanotechnology, 2012, 12, 769-774.	Mg&JtSUI	B>0.2<
34	Performance Improvement of Ni-YSZ-Based Solid Oxide Fuel Cell with the Anode Functional Layer Synthesized by Co-Precipitation Method. ECS Transactions, 2013, 57, 2947-2952.	0.5	1
35	Electrospun Poly(Ether Sulfone) Membranes Impregnated with Nafion for High-Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of the Korean Electrochemical Society, 2016, 19, 9-13.	0.1	0
36	Various Problems in Oxygen-evolution Reaction Catalysts in Alkaline Conditions and Perovskites Utilization. Ceramist, 2019, 22, 182-188.	0.1	0