Takahiro Sawaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6895500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ferrous Shape Memory Alloys. , 2022, , 214-222.		0
2	Transformation-induced plasticity via γ → ε → α' and γ → ε → γ martensitic transformations in Fe–15Mn–10Cr–8Ni–4Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142583.	2.6	8
3	Improvement of Shape Memory Effect by Optimizing Thermal and Mechanical <i>γ</i> → <i>ε</i> Martensitic Transformation by Hot Rolling. ISIJ International, 2022, 62, 328-334.	0.6	0
4	Microstructure and Plasticity Evolution During Lüders Deformation in an Fe-5Mn-0.1C Medium-Mn Steel. ISIJ International, 2022, 62, 2036-2042.	0.6	12
5	Direct observation of solidification behaviors of Fe-Mn-Si alloys during TIG spot welding using synchrotron X-ray. Scripta Materialia, 2022, 216, 114743.	2.6	6
6	Fatigueâ€resistant Feâ€Mnâ€6iâ€based alloy seismic dampers to counteract longâ€period ground motion. Japan Architectural Review, 2021, 4, 76-87.	0.4	24
7	Influence of Annealing Microstructure on the Low-cycle Fatigue Properties and Fatigue Microstructure of a Fe–15Mn–10Cr–8Ni–4Si Seismic Damping Alloy. ISIJ International, 2021, , .	0.6	0
8	Development of ferrous-based weldable seismic damping alloy with prolonged plastic fatigue life. Scripta Materialia, 2021, 197, 113815.	2.6	7
9	Origin of phase stability in Fe with long-period stacking order as an intermediate phase in cyclic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>^ĵ3</mml:mi><mml:mtext>â^²</mml:mtext> martensitic transformation. Physical Review Research. 2021. 3.</mml:math 	. <mark>1</mark> i3îµ <td>ml:mi></td>	ml:mi>
10	Low-cycle fatigue life and plasticity mechanisms of a Feâ^'15Mnâ^'10Crâ^'8Niâ^'4Si seismic damping alloy under cyclic loading at various temperatures. Acta Materialia, 2021, 220, 117267.	3.8	17
11	Study on Extremely-Low Cycle Fatigue of Fe-15Mn-10Cr-8Ni-4Si Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 751-757.	0.1	0
12	Characterization of crystallographic fracture surfaces in Fe–33Mn–6Si alloy. International Journal of Fatigue, 2020, 130, 105271.	2.8	10
13	Influence of cold rolling deformation mechanisms on the grain refinement of Fe–15Mn–10Cr–8Ni–4Si austenitic alloy. Materials Characterization, 2020, 162, 110191.	1.9	10
14	Fatigue properties and plastically deformed microstructure of Fe-15Mn-10Cr-8Ni-4Si alloy in high-cycle-fatigue regime. International Journal of Fatigue, 2019, 129, 105224.	2.8	6
15	Effect of carbon on the low-cycle fatigue resistance and microstructure of the Fe–15Mn–10Cr–8Ni–4Si seismic damping alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138321.	2.6	2
16	A strategy of designing high-entropy alloys with high-temperature shape memory effect. Scientific Reports, 2019, 9, 13140.	1.6	38
17	Superior fatigue life of Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy under asymmetric cyclic loading with tensile mean strain. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 748, 371-378.	2.6	5
18	EBSD analysis of dual γ/ε phase microstructures in tensile-deformed Fe-Mn-Si shape memory alloy. Journal of Alloys and Compounds, 2019, 797, 529-536.	2.8	13

TAKAHIRO SAWAGUCHI

#	Article	IF	CITATIONS
19	Improved fatigue life of the newly developed Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy. Procedia Structural Integrity, 2019, 19, 214-223.	0.3	12
20	Mechanical properties of an Fe-30Mn-4Si-2Al alloy after rolling at different temperatures ranging from 298 to 1073†K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 127-137.	2.6	19
21	Twinning of deformation-induced ε-martensite in Fe-30Mn-6Si shape memory alloy. Acta Materialia, 2018, 143, 237-247.	3.8	26
22	Microstructural hardness heterogeneity triggers fatigue crack non-propagation in as-hot-rolled Fe-30Mn-3Si-3Al twinning-induced plasticity steel. International Journal of Fatigue, 2018, 108, 18-24.	2.8	12
23	Strain Ratio Effect on the Low Cycle Fatigue Behavior and Microstructure of High-Mn Austenitic Alloy Undergoing the Strain-Induced Îμ-Martensitic Transformation. Materials Science Forum, 2018, 941, 1065-1070.	0.3	0
24	Influence of Transformation Pseudoelasticity and Accumulated Plastic Strain on Low Cycle Fatigue Characteristics of Fe-30Mn-4Si-2Al Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 393-399.	0.1	4
25	Overview of Dynamic Strain Aging and Associated Phenomena in Fe–Mn–C Austenitic Steels. ISIJ International, 2018, 58, 1383-1395.	0.6	47
26	Overview of Dynamic Strain Aging and Associated Phenomena in Fe-Mn-C Austenitic Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 187-200.	0.1	6
27	Superior fatigue life of Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy subjected to extremely high strain amplitudes. Materials Letters, 2018, 230, 257-260.	1.3	16
28	Microstructural damage evolution and arrest in binary Fe–high-Mn alloys with different deformation temperatures. International Journal of Fracture, 2018, 213, 193-206.	1.1	9
29	Simultaneous twinning nucleation mechanisms in an Fe–Mn–Si–Al twinning induced plasticity steel. Acta Materialia, 2017, 132, 264-275.	3.8	28
30	Mechanical-probabilistic evaluation of size effect of fatigue life using data obtained from single smooth specimen: An example using Fe-30Mn-4Si-2Al seismic damper alloy. Engineering Failure Analysis, 2017, 72, 34-47.	1.8	11
31	Improvement of low-cycle fatigue resistance of Co-Ni alloys by silicon addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 9-16.	2.6	Ο
32	Effects of Îμ-martensitic transformation on crack tip deformation, plastic damage accumulation, and slip plane cracking associated with low-cycle fatigue crack growth. International Journal of Fatigue, 2017, 103, 533-545.	2.8	27
33	Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy. Acta Materialia, 2017, 124, 79-92.	3.8	94
34	Comparative study on small fatigue crack propagation between Fe-30Mn-3Si-3Al and Fe-23Mn-0.5C twinning-induced plasticity steels: Aspects of non-propagation of small fatigue cracks. International Journal of Fatigue, 2017, 94, 1-5.	2.8	27
35	Effect of Deformation Temperature on Low-Cycle Fatigue Properties of Fe-28Mn-6Si-5Cr Shape Memory Alloy. Materials Transactions, 2016, 57, 639-646.	0.4	14
36	Comparison of Reverse Transformation Behaviors of Thermally- and Deformation-Induced ε-Martensite in Fe-28Mn-6Si-5Cr Shape Memory Alloy. Materials Transactions, 2016, 57, 1707-1713.	0.4	9

#	Article	IF	CITATIONS
37	Design Concept and Applications of Fe–Mn–Si-Based Alloys—from Shape-Memory to Seismic Response Control. Materials Transactions, 2016, 57, 283-293.	0.4	117
38	Fatigue properties of Fe-28Mn-6Si-5Cr-0.5NbC alloy. Procedia Structural Integrity, 2016, 2, 1435-1442.	0.3	3
39	In situ microscopic observations of low-cycle fatigue-crack propagation in high-Mn austenitic alloys with deformation-induced ε-martensitic transformation. Acta Materialia, 2016, 112, 326-336.	3.8	61
40	Hydrogen Embrittlement Susceptibility of Fe-Mn Binary Alloys with High Mn Content: Effects of Stable and Metastable ε-Martensite, and Mn Concentration. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2656-2673.	1.1	67
41	Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe–15Mn–10Cr–8Ni–4Si seismic damping alloy. International Journal of Fatigue, 2016, 88, 132-141.	2.8	54
42	Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fe–15Mn–10Cr–8Ni–xSi austenitic alloys. Acta Materialia, 2016, 105, 207-218.	3.8	68
43	Low Cycle Fatigue Properties of Fe-28Mn-6Si-5Cr-0.5NbC Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 517-524.	0.1	5
44	Roles of ε-martensite on Resistance to Crack Growth:. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, G0300103.	0.0	0
45	Importance of crack-propagation-induced ε-martensite in strain-controlled low-cycle fatigue of high-Mn austenitic steel. Philosophical Magazine Letters, 2015, 95, 303-311.	0.5	25
46	Effects of Si on Tensile Properties Associated with Deformation-Induced ε-Martensitic Transformation in High Mn Austenitic Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 657-663.	0.2	3
47	Effects of Si on Tensile Properties Associated with Deformation-Induced ε-Martensitic Transformation in High Mn Austenitic Alloys. Materials Transactions, 2015, 56, 819-825.	0.4	19
48	Deformation Twinning Behavior of Twinning-induced Plasticity Steels with Different Carbon Concentrations – Part 2: Proposal of Dynamic-strain-aging-assisted Deformation Twinning. ISIJ International, 2015, 55, 1754-1761.	0.6	37
49	Microstructure Evolution Associated with a Superior Low-Cycle Fatigue Resistance of the Fe-30Mn-4Si-2Al Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5103-5113.	1.1	24
50	Designing Fe–Mn–Si alloys with improved low-cycle fatigue lives. Scripta Materialia, 2015, 99, 49-52.	2.6	129
51	Deformation Twinning Behavior of Twinning-induced Plasticity Steels with Different Carbon Concentrations – Part 1: Atomic Force Microscopy and Electron Backscatter Diffraction Measurements. ISIJ International, 2015, 55, 1747-1753.	0.6	8
52	Deformation Twinning Behavior of Twinning-Induced Plasticity Steels with Different Carbon Concentrations. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1253-1260.	0.1	6
53	Deformation Twinning Behavior of Twinning-Induced Plasticity Steels with Different Carbon Concentrations. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1246-1252.	0.1	8
54	{332}ã€^113〉 Twinning system selection in a β-type Ti–15Mo–5Zr polycrystalline alloy. Materials Scienc & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 579, 164-169.	е 2.6	59

#	Article	IF	CITATIONS
55	Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe–30Mn–(6â"x)Si–xAl TRIP/TWIP alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 587, 192-200.	2.6	105
56	Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel. Corrosion Science, 2013, 75, 345-353.	3.0	85
57	Temperature dependence of intersection reactions of ɛ martensite plates in an Fe–30Mn–4Si–2Al TRIP/TWIP steel. Journal of Alloys and Compounds, 2013, 577, S533-S537.	2.8	15
58	Microstructure characteristic and its effect on mechanical and shape memory properties in a Fe–17Mn–8Si–0.3C alloy. Journal of Alloys and Compounds, 2013, 573, 15-19.	2.8	6
59	An attempt to lower Mn content of Fe–17Mn–6Si–0.3C shape memory alloy. Journal of Alloys and Compounds, 2013, 577, S478-S482.	2.8	3
60	Low-cycle fatigue properties of the Fe-30Mn-(6-x)Si-xAl TRIP/TWIP alloys. , 2013, , 665-671.		0
61	TWIP Effect and Plastic Instability Condition in an Fe^ ^ndash;Mn^ ^ndash;C Austenitic Steel. ISIJ International, 2013, 53, 323-329.	0.6	67
62	Inverse grain size dependence of critical strain for serrated flow in a Fe–Mn–C twinning-induced plasticity steel. Philosophical Magazine Letters, 2012, 92, 145-152.	0.5	19
63	Influence of Dislocation Separation on Dynamic Strain Aging in a Fe–Mn–C Austenitic Steel. Materials Transactions, 2012, 53, 546-552.	0.4	29
64	Selective appearance of <i>ϵ</i> -martensitic transformation and dynamic strain aging in Fe–Mn–C austenitic steels. Philosophical Magazine, 2012, 92, 3051-3063.	0.7	28
65	Effect of deformation temperature on tensile properties in a pre-cooled Fe–Mn–C austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 331-336.	2.6	12
66	Premature Fracture Mechanism in an Fe-Mn-C Austenitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4063-4074.	1.1	52
67	Quasi-cleavage Fracture along Annealing Twin Boundaries in a Fe–Mn–C Austenitic Steel. ISIJ International, 2012, 52, 161-163.	0.6	31
68	TWIP Effect and Plastic Instability Condition in an Fe-Mn-C Austenitic Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 229-236.	0.1	10
69	Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel. Scripta Materialia, 2012, 66, 459-462.	2.6	168
70	Reasons for incomplete shape recovery in polycrystalline Fe–Mn–Si shape memory alloys. Scripta Materialia, 2012, 67, 37-40.	2.6	33
71	A structure created by intersecting <i>ïµ</i> martensite variant plates in a high-manganese steel. Philosophical Magazine, 2011, 91, 4410-4426.	0.7	32
72	Work hardening and uniform elongation of an ultrafine-grained Fe–33Mn binary alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 659-663.	2.6	16

#	Article	IF	CITATIONS
73	Nanoindentation/atomic force microscopy analyses of ε-martensitic transformation and shape memory effect in Fe–28Mn–6Si–5Cr alloy. Scripta Materialia, 2011, 65, 942-945.	2.6	43
74	Shape memory effect in Fe–Mn–Ni–Si–C alloys with low Mn contents. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5251-5258.	2.6	15
75	Si content dependence on shape memory and tensile properties in Fe–Mn–Si–C alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2882-2888.	2.6	40
76	Work hardening associated with É≻martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7310-7316.	2.6	185
77	Orientation dependence of variant selection and intersection reactions of <i>ϵ</i> martensite in a high-manganese austenitic steel. Philosophical Magazine Letters, 2011, 91, 563-571.	0.5	25
78	Continuous Transition of Deformation Modes in Fe-30Mn-5Si-1Al Alloy. Materials Transactions, 2010, 51, 1194-1199.	0.4	8
79	Atomic Arrangement of Interphase Boundary between Bainite and Austenite in Fe-Si-C Alloy. Materials Transactions, 2010, 51, 455-462.	0.4	5
80	Texture characteristics controlled by single slip plane slipping in the warm-rolled Fe-14Mn-5Si-9Cr-5Ni shape memory alloy. Journal of Materials Research, 2009, 24, 2097-2106.	1.2	0
81	TEM observation of the restrained Goss–Brass orientation transformation in a warm-rolled Fe–28Mn–6Si–5Cr shape memory alloy. Philosophical Magazine Letters, 2009, 89, 348-357.	0.5	2
82	Isothermal fcc/hcp Transformation in Fe-Si-C-Alloy Thermally Treated at Lower Bainitic Transformation Temperature. Materials Transactions, 2009, 50, 2778-2784.	0.4	5
83	Continuous Transition of Deformation Mode in Fe-30Mn-5Si-1Al Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2009, 73, 174-179.	0.2	4
84	Deformation microstructure of TRIP/TWIP Steels at the early deformation stages. , 2009, , .		3
85	Role of Si on the shape memory property of Fe-Mn-Si-C based alloys. , 2009, , .		0
86	The effects of thermomechanical training treatment on the deformation characteristics of Fe–Mn–Si–Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 353-357.	2.6	42
87	Texture evolution analysis of warm-rolled Fe–28Mn–6Si–5Cr shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 494, 217-226.	2.6	21
88	Mechanism of reversible transformation-induced plasticity of Fe–Mn–Si shape memory alloys. Scripta Materialia, 2008, 59, 826-829.	2.6	91
89	Atomic Arrangement of Interphase Boundary between Bainite and Austenite in Fe-Si-C Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 1028-1035.	0.2	2
90	AFM Observation of Microstructural Changes in Fe-Mn-Si-Al Shape Memory Alloy. Materials Transactions, 2008, 49, 812-816.	0.4	14

#	Article	IF	CITATIONS
91	Isothermal fcc/hcp Transformation in Fe-Si-C-Alloy Thermally Treated at Lower Bainitic Transformation Temperature. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 1036-1043.	0.2	1
92	Effects of Nb and C in Solution and in NbC Form on the Transformation-related Internal Friction of Fe–17Mn (mass%) Alloys. ISIJ International, 2008, 48, 99-106.	0.6	25
93	Atomic Force Microscopic Observation of Microstructural Changes in Fe-Mn-Si-Al Shape Memory Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 672-677.	0.2	4
94	Influence of Al on Shape Memory Effect and Twinning Induced Plasticity of Fe-Mn-Si-Al System Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 502-507.	0.2	6
95	Influence of Al on Shape Memory Effect and Twinning Induced Plasticity of Fe-Mn-Si-Al System Alloy. Materials Transactions, 2007, 48, 2729-2734.	0.4	27
96	Mechanism of the Improvement of Shape Memory Effects in NbC Containing Fe-Mn-Si-Based Shape Memory Alloys. Materials Transactions, 2007, 48, 869-877.	0.4	6
97	Internal Friction of Fe-Mn-Si-Based Shape Memory Alloys Containing Nb and C and Their Application as a Seismic Damping Material. Key Engineering Materials, 2006, 319, 53-58.	0.4	10
98	217 Development of an SMA/TWIP steel based on Fe-Mn-Si-Al. The Proceedings of the Materials and Processing Conference, 2006, 2006.14, 97-98.	0.0	0
99	Martensite Transformation and Shape Recovery in Pre-Deformed Fe-15Mn-5Si-9Cr-5Ni-(0.5–1.5) NbC Alloys. Materials Transactions, 2006, 47, 1328-1331.	0.4	2
100	Mechanism of Improvement of Shape Memory Effect in NbC Containing Fe-Mn-Si-Based Shape Memory Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 25-33.	0.2	4
101	Development of Prestressed Concrete Using Fe–Mn–Si-Based Shape Memory Alloys Containing NbC. Materials Transactions, 2006, 47, 580-583.	0.4	63
102	Microstructure change and shape memory characteristics in welded Fe–28Mn–6Si–5Cr–0.53Nb–0.06C alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 800-803.	2.6	9
103	Internal friction study on fcc/hcp martensitic transformations in thermomechanically treated Fe–28Mn–6Si–5Cr–0.53Nb–0.06C (mass%) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 404-408.	2.6	10
104	Internal friction of an Fe–28Mn–6Si–5Cr–0.5NbC shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 796-799.	2.6	9
105	Vibration mitigation by the reversible fcc/hcp martensitic transformation during cyclic tension–compression loading of an Fe–Mn–Si-based shape memory alloy. Scripta Materialia, 2006, 54, 1885-1890.	2.6	91
106	Transformation Dislocation of Fe-Ni-Mn Alloy. Materia Japan, 2006, 45, 846-846.	0.1	0
107	Development of Prestressed Concrete Using Fe-Mn-Si-Based Shape Memory Alloys Containing NbC. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 659-662.	0.2	6
108	Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe–15Mn–5Si–9Cr–5Ni–(0.5–1.5)NbC alloys. Acta Materialia, 2005, 53, 4009-4018.	3.8	92

Takahiro Sawaguchi

#	Article	IF	CITATIONS
109	The pseudoelastic behavior of Fe–Mn–Si-based shape memory alloys containing Nb and C. Smart Materials and Structures, 2005, 14, S317-S322.	1.8	29
110	Grain-size effect on shape-memory behavior of Ti35.0Ni49.7Zr15.4 thin films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 111-119.	1.1	32
111	Structural fatigue of pseudoelastic NiTi shape memory wires. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 105-109.	2.6	123
112	Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2847-2860.	1.1	117
113	Sputter-Deposited TiZrNi High-Temperature Shape-Memory Thin Films. Materials Science Forum, 2002, 394-395, 499-502.	0.3	4
114	Microstructure and shape memory behavior of Ti51.2(Pd27.0Ni21.8) and Ti49.5(Pd28.5Ni22.0) thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 332, 47-55.	2.6	35
115	Effects of Composition and Annealing on Shape Memory Behavior of Ti-Rich Ti-Ni Thin Films Formed by Sputtering. Materials Transactions, 2001, 42, 1060-1067.	0.4	37
116	Ti-Pd-Ni high temperature shape memory thin films formed with carousel type magnetron sputtering apparatus. European Physical Journal Special Topics, 2001, 11, Pr8-427-Pr8-432.	0.2	1
117	Shape memory behavior of Ti-rich Ti-Ni thin films formed by sputtering. European Physical Journal Special Topics, 2001, 11, Pr8-409-Pr8-414.	0.2	0
118	Effects of Composition and Annealing on Shape Memory Behavior of Ti-rich Ti-Ni Thin Films Formed by Sputtering. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2000, 64, 62-66.	0.2	1
119	Microstructures and PTCR Properties of Bismuth Metal/Strontium-Bismuth-Titanate Ceramic Composites. Materials Transactions, JIM, 1999, 40, 404-407.	0.9	2
120	New PTC Materials Based on Bi Metal/Ceramics Composites. Materials Transactions, JIM, 1997, 38, 353-358.	0.9	3
121	Origin of Appearance of PTCR Properties in Bi–Sr–Ti–O System. Materials Transactions, JIM, 1996, 37, 426-429.	0.9	2
122	Low-Cycle Fatigue Behavior and Microstructural Evolution of the Fe–30Mn–4Si–2Al Alloy. Materials Science Forum, 0, 783-786, 944-949.	0.3	2
123	The Improvement of Shape Recovery Property through Training Treatment in an Fe-30Mn-5Si-1Al. , 0, , 583-586.		0
124	The Stress-Induced Reverse Martensitic Transformation in Fe-Mn-Si Shape Memory Alloys. , 0, , 153-157.		0