Marc Remke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6895499/publications.pdf

Version: 2024-02-01

14644 20,965 183 66 citations h-index papers

g-index 186 186 186 20299 docs citations times ranked citing authors all docs

10152

140

#	Article	IF	CITATIONS
1	BAFF Attenuates Immunosuppressive Monocytes in the Melanoma Tumor Microenvironment. Cancer Research, 2022, 82, 264-277.	0.4	8
2	Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: Enzymatic Taoism. Redox Biology, 2022, 49, 102221.	3.9	6
3	Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) expression in glioblastoma is driven by ETS1- and MYBL2-dependent transcriptional activation. Cell Death Discovery, 2022, 8, 91.	2.0	6
4	Intratumoral heterogeneity of MYC drives medulloblastoma metastasis and angiogenesis. Neuro-Oncology, 2022, 24, 1509-1523.	0.6	12
5	EIF4EBP1 is transcriptionally upregulated by MYCN and associates with poor prognosis in neuroblastoma. Cell Death Discovery, 2022, 8, 157.	2.0	3
6	Structural damage burden and hypertrophic olivary degeneration in pediatric postoperative cerebellar mutism syndrome. Neurosurgical Review, 2022, , .	1.2	0
7	LGG-27. Molecular implications of mitogen-activated protein kinase pathway inhibition by the MEK inhibitor trametinib in BRAF-fusion-driven pediatric pilocytic astrocytoma. Neuro-Oncology, 2022, 24, i94-i94.	0.6	O
8	The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nature Communications, 2022, 13 , .	5.8	16
9	Reduced chromatin binding of MYC is a key effect of HDAC inhibition in MYC amplified medulloblastoma. Neuro-Oncology, 2021, 23, 226-239.	0.6	22
10	Expression of cell type incongruent alpha-cardiac actin 1 subunit in medulloblastoma reveals a novel mechanism for cancer cell survival and control of migration. Neuro-Oncology Advances, 2021, 3, vdab064.	0.4	1
11	Circular RNA profiling distinguishes medulloblastoma groups and shows aberrant RMST overexpression in WNT medulloblastoma. Acta Neuropathologica, 2021, 141, 975-978.	3.9	12
12	Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression. ACS Central Science, 2021, 7, 868-881.	5.3	34
13	EMBR-01. CLASS I HDAC INHIBITORS AND PLK1 INHIBITORS SYNERGIZE IN MYC-AMPLIFIED MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i5-i5.	0.6	O
14	EMBR-13. NOVEL SYNERGISTIC APPROACHES FOR TARGETED THERAPY OF MYC-DRIVEN MEDULLOBLASTOMA USING CRISPR/CAS9 GENE EDITING. Neuro-Oncology, 2021, 23, i8-i8.	0.6	0
15	LGG-04. MULTIOMIC ANALYSIS OF MAPK PATHWAY ACTIVITY IN PEDIATRIC PILOCYTIC ASTROCYTOMA. Neuro-Oncology, 2021, 23, i31-i32.	0.6	0
16	Classical and Variant Merkel Cell Carcinoma Cell Lines Display Different Degrees of Neuroendocrine Differentiation and Epithelial-Mesenchymal Transition. Journal of Investigative Dermatology, 2021, 141, 1675-1686.e4.	0.3	13
17	Identification and Functional Characterization of Novel MYC-Regulated Long Noncoding RNAs in Group 3 Medulloblastoma. Cancers, 2021, 13, 3853.	1.7	4
18	Survival Benefit for Individuals With Constitutional Mismatch Repair Deficiency Undergoing Surveillance. Journal of Clinical Oncology, 2021, 39, 2779-2790.	0.8	40

#	Article	IF	CITATIONS
19	Longitudinal stability of molecular alterations and drug response profiles in tumor spheroid cell lines enables reproducible analyses. Biomedicine and Pharmacotherapy, 2021, 144, 112278.	2.5	5
20	C.5 Musashi-1 is a master regulator of aberrant translation in MYC-amplified Group 3 medulloblastoma. Canadian Journal of Neurological Sciences, 2021, 48, S19-S19.	0.3	0
21	Proteomeâ€Wide Survey of Cysteine Oxidation by Using a Norbornene Probe. ChemBioChem, 2020, 21, 1329-1334.	1.3	12
22	Involvement of CXCL1/CXCR2 During Microglia Activation Following Inflammation-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Rats. Frontiers in Neurology, 2020, 11, 540878.	1.1	34
23	Different Calculation Strategies Are Congruent in Determining Chemotherapy Resistance of Brain Tumors In Vitro. Cells, 2020, 9, 2689.	1.8	4
24	Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature, 2020, 580, 396-401.	13.7	94
25	Interferon- \hat{l}^2 exposure induces a fragile glioblastoma stem cell phenotype with a transcriptional profile of reduced migratory and MAPK pathway activity. Neuro-Oncology Advances, 2020, 2, vdaa043.	0.4	3
26	YBX1 Indirectly Targets Heterochromatin-Repressed Inflammatory Response-Related Apoptosis Genes through Regulating CBX5 mRNA. International Journal of Molecular Sciences, 2020, 21, 4453.	1.8	11
27	N-Myc-induced metabolic rewiring creates novel therapeutic vulnerabilities in neuroblastoma. Scientific Reports, 2020, 10, 7157.	1.6	19
28	Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. Nature Communications, 2020, 11, 1825.	5.8	21
29	Bi-allelic Variants in RALGAPA1 Cause Profound Neurodevelopmental Disability, Muscular Hypotonia, Infantile Spasms, and Feeding Abnormalities. American Journal of Human Genetics, 2020, 106, 246-255.	2.6	17
30	A Cell-Based MAPK Reporter Assay Reveals Synergistic MAPK Pathway Activity Suppression by MAPK Inhibitor Combination in $\langle i \rangle$ BRAF $\langle i \rangle$ -Driven Pediatric Low-Grade Glioma Cells. Molecular Cancer Therapeutics, 2020, 19, 1736-1750.	1.9	13
31	MBRS-48. IDENTIFICATION OF NOVEL THERAPEUTIC APPROACHES FOR MYC-DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii406-iii406.	0.6	0
32	LGG-17. SYNERGISTIC ACTIVITY OF MAPK INHIBITOR CLASSES REVEALED BY A NOVEL CELL-BASED MAPK ACTIVITY PEDIATRIC LOW-GRADE GLIOMA ASSAY. Neuro-Oncology, 2020, 22, iii369-iii369.	0.6	0
33	EPEN-33. PHARMACOGENOMICS REVEALS SYNERGISTIC INHIBITION OF ERBB2 AND PI3K SIGNALING AS A THERAPEUTIC STRATEGY FOR EPENDYMOMA. Neuro-Oncology, 2020, 22, iii314-iii314.	0.6	0
34	MBRS-10. QUIESCENT SOX9-POSITIVE CELLS BEHIND MYC DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2020, 22, iii400-iii400.	0.6	0
35	The homeobox transcription factor HB9 induces senescence and blocks differentiation in hematopoietic stem and progenitor cells. Haematologica, 2019, 104, 35-46.	1.7	24
36	SIG-03. HHIP-AS1 PROMOTES TUMOR SURVIVAL THROUGH STABILIZING DYNEIN COMPLEX 1 IN HEDGEHOG DRIVEN HUMAN BRAIN TUMORS. Neuro-Oncology, 2019, 21, ii113-ii114.	0.6	1

#	Article	IF	Citations
37	A Sexually Dimorphic Role for STAT3 in Sonic Hedgehog Medulloblastoma. Cancers, 2019, 11, 1702.	1.7	14
38	Single-Cell Transcriptomics in Medulloblastoma Reveals Tumor-Initiating Progenitors and Oncogenic Cascades during Tumorigenesis and Relapse. Cancer Cell, 2019, 36, 302-318.e7.	7.7	96
39	Design, synthesis and biological evaluation of \hat{l}^2 -peptoid-capped HDAC inhibitors with anti-neuroblastoma and anti-glioblastoma activity. MedChemComm, 2019, 10, 1109-1115.	3.5	11
40	Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells. PLoS ONE, 2019, 14, e0210665.	1.1	5
41	The long noncoding RNA <i>TP73â€AS1</i> promotes tumorigenicity of medulloblastoma cells. International Journal of Cancer, 2019, 145, 3402-3413.	2.3	27
42	EPEN-08. PHARMACOGENOMICS REVEALS ERBB2 AS A THERAPEUTIC TARGET IN PRIMARY EPENDYMOMA CULTURES. Neuro-Oncology, 2019, 21, ii78-ii79.	0.6	0
43	Effective and safe tumor inhibition using vinblastine in medulloblastoma. Pediatric Blood and Cancer, 2019, 66, e27694.	0.8	7
44	MEDU-26. LATENT SOX9-POSITIVE CELLS RESPONSIBLE FOR MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2019, 21, ii108-ii109.	0.6	0
45	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	13.7	94
46	The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clinical Cancer Research, 2019, 25, 1851-1866.	3.2	55
47	Therapeutic Stratification of PTEN-MYC Axis Appears to be Promising for Molecular Targeted Therapies in Refractory and Relapsed T-Cell Acute Lymphoblastic Leukemia. Blood, 2019, 134, 3883-3883.	0.6	0
48	Investigation of New Therapeutic Compounds for Juvenile Myelomonocytic Leukemia Using Induced Pluripotent Stem Cells with Stably Activated Ras Pathway. Blood, 2019, 134, 4651-4651.	0.6	0
49	Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1–TGF-β–OTX2–SNAIL via PTEN inhibition. Brain, 2018, 141, 1300-1319.	3.7	22
50	Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis. Cancer Cell, 2018, 33, 292-308.e7.	7.7	83
51	Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3392-3397.	3.3	34
52	miR miR on the wall, who's the most malignant medulloblastoma miR of them all?. Neuro-Oncology, 2018, 20, 313-323.	0.6	15
53	DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. Journal of Clinical Investigation, 2018, 129, 223-229.	3.9	130
54	MBRS-50. PEROXIREDOXIN1 IS A THERAPEUTIC TARGET IN GROUP-3 MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i139-i139.	0.6	1

#	Article	IF	Citations
55	MBRS-16. HDAC AND NFκB ANTAGONISTS SYNERGISTICALLY INHIBIT GROWTH OF MYC-DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i131-i131.	0.6	0
56	TMOD-35. CAN RARE SOX9-POSITIVE CELLS INCITE MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE?. Neuro-Oncology, 2018, 20, vi276-vi276.	0.6	0
57	Accumulation of protoporphyrin IX in medulloblastoma cell lines and sensitivity to subsequent photodynamic treatment. Journal of Photochemistry and Photobiology B: Biology, 2018, 189, 298-305.	1.7	16
58	Characterization of a Clival Chordoma Xenograft Model Reveals Tumor Genomic Instability. American Journal of Pathology, 2018, 188, 2902-2911.	1.9	8
59	ATRT-34. TARGETING PRIMARY CILIOGENESIS IN ATYPICAL TERATOID/RHABDOID TUMORS. Neuro-Oncology, 2018, 20, i35-i35.	0.6	0
60	18 Peroxiredoxin1 is a therapeutic target in group-3 medulloblastoma. Canadian Journal of Neurological Sciences, 2018, 45, S16-S16.	0.3	0
61	MBRS-52. TARGETING PRUNE-1 IN A GEMM OF METASTATIC MEDULLOBLASTOMA: A POTENTIAL ROUTE OF INHIBITION FOR NEW FUTURE THERAPIES. Neuro-Oncology, 2018, 20, i139-i139.	0.6	0
62	Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell, 2018, 34, 379-395.e7.	7.7	104
63	Multiple DNA damage-dependent and DNA damage-independent stress responses define the outcome of ATR/Chk1 targeting in medulloblastoma cells. Cancer Letters, 2018, 430, 34-46.	3.2	17
64	Infant medulloblastoma â€" learning new lessons from old strata. Nature Reviews Clinical Oncology, 2018, 15, 659-660.	12.5	15
65	Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. Blood, 2018, 132, 307-320.	0.6	66
66	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	9.4	112
67	CBF1 is clinically prognostic and serves as a target to block cellular invasion and chemoresistance of EMT-like glioblastoma cells. British Journal of Cancer, 2017, 117, 102-112.	2.9	28
68	MYCN amplified neuroblastoma requires the mRNA translation regulator eEF2 kinase to adapt to nutrient deprivation. Cell Death and Differentiation, 2017, 24, 1564-1576.	5.0	24
69	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	7.7	836
70	The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. Neuro-Oncology, 2017, 19, 1217-1227.	0.6	53
71	Disrupting the CD47-SIRPÎ \pm anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Translational Medicine, 2017, 9, .	5.8	306
72	TAp73 is a marker of glutamine addiction in medulloblastoma. Genes and Development, 2017, 31, 1738-1753.	2.7	49

#	Article	IF	Citations
73	Tropomyosin receptor kinase C (TrkC) expression in medulloblastoma: relation to the molecular subgroups and impact on treatment response. Child's Nervous System, 2017, 33, 1463-1471.	0.6	7
74	Alkoxyurea-Based Histone Deacetylase Inhibitors Increase Cisplatin Potency in Chemoresistant Cancer Cell Lines. Journal of Medicinal Chemistry, 2017, 60, 5334-5348.	2.9	37
75	A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma. Oncogene, 2017, 36, 5969-5984.	2.6	42
76	Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing. Oncotarget, 2017, 8, 11460-11479.	0.8	43
77	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	7.7	191
78	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathologica, 2016, 131, 821-831.	3.9	478
79	WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma. Oncogene, 2016, 35, 5552-5564.	2.6	23
80	Genome-Wide DNA Methylation Analysis Reveals Epigenetic Dysregulation of MicroRNA-34A in <i>TP53</i> -Associated Cancer Susceptibility. Journal of Clinical Oncology, 2016, 34, 3697-3704.	0.8	33
81	PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Research, 2016, 76, 4708-4719.	0.4	107
82	MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem celland Group 3-properties. BMC Cancer, 2016, 16, 115.	1.1	17
83	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	0.8	160
84	Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients?. Neuro-Oncology, 2016, 18, 291-297.	0.6	112
85	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	13.7	266
86	Evasion of Cell Senescence Leads to Medulloblastoma Progression. Cell Reports, 2016, 14, 2925-2937.	2.9	35
87	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	13.5	702
88	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	5.1	274
89	YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene, 2016, 35, 4256-4268.	2.6	32
90	Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma. Oncotarget, 2016, 7, 53881-53894.	0.8	17

#	Article	IF	Citations
91	Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. ELife, 2016, 5, .	2.8	21
92	Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathologica, 2015, 129, 449-457.	3.9	80
93	<i>BRAF</i> Mutation and <i>CDKN2A</i> Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma. Journal of Clinical Oncology, 2015, 33, 1015-1022.	0.8	244
94	Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nature Genetics, 2015, 47, 257-262.	9.4	306
95	The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants. Oncogene, 2015, 34, 1126-1140.	2.6	41
96	Clinical implications of medulloblastoma subgroups: incidence of CSF diversion surgery. Journal of Neurosurgery: Pediatrics, 2015, 15, 236-242.	0.8	48
97	Neoadjuvant chemotherapy reduces blood loss during the resection of pediatric choroid plexus carcinomas. Journal of Neurosurgery: Pediatrics, 2015, 16, 126-133.	0.8	27
98	Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. Clinical Cancer Research, 2015, 21, 3750-3758.	3.2	40
99	EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. Nature Neuroscience, 2015, 18, 1236-1246.	7.1	74
100	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	7.7	90
101	Foretinib Is Effective Therapy for Metastatic Sonic Hedgehog Medulloblastoma. Cancer Research, 2015, 75, 134-146.	0.4	51
102	Basic Science of Pediatric Brain Tumors. , 2015, , 59-67.		1
103	A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma. Oncotarget, 2015, 6, 2709-2724.	0.8	24
104	Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes. Oncotarget, 2015, 6, 38881-38900.	0.8	22
105	Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget, 2014, 5, 2355-2371.	0.8	103
106	Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells. Acta Neuropathologica, 2014, 128, 863-877.	3.9	34
107	Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors. Acta Neuropathologica, 2014, 128, 853-862.	3.9	46
108	Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. Journal of Neurosurgery, 2014, 121, 1434-1445.	0.9	35

#	Article	lF	CITATIONS
109	ATM Regulates 3-Methylpurine-DNA Glycosylase and Promotes Therapeutic Resistance to Alkylating Agents. Cancer Discovery, 2014, 4, 1198-1213.	7.7	55
110	Targeting the base excision repair pathway to overcome therapeutic resistance to alkylating agents in pediatric glioblastoma. Canadian Journal of Neurological Sciences, 2014, 41, S5-S6.	0.3	0
111	An epigenetic therapy for diffuse intrinsic pontine gliomas. Nature Medicine, 2014, 20, 1378-1379.	15.2	25
112	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	2.4	37
113	Classifying medulloblastoma into molecular subgroups: Means, motive, and opportunity. Canadian Journal of Neurological Sciences, 2014, 41, S2-S3.	0.3	0
114	Can miRNA-based real-time PCR be used to classify medulloblastomas?. CNS Oncology, 2014, 3, 173-175.	1.2	2
115	Neogenin1 is a sonic hedgehog target in medulloblastoma and is necessary for cell cycle progression. International Journal of Cancer, 2014, 134, 21-31.	2.3	26
116	Treatment developments and the unfolding of the quality of life discussion in childhood medulloblastoma: a review. Child's Nervous System, 2014, 30, 979-990.	0.6	41
117	Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion. Acta Neuropathologica Communications, 2014, 2, 10.	2.4	29
118	Duration of the preâ€diagnostic interval in medulloblastoma is subgroup dependent. Pediatric Blood and Cancer, 2014, 61, 1190-1194.	0.8	42
119	Epigenetic silencing of miRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma. British Journal of Cancer, 2014, 110, 636-647.	2.9	49
120	Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014, 506, 445-450.	13.7	521
121	Proteomic analyses of CSF aimed at biomarker development for pediatric brain tumors. Journal of Neuro-Oncology, 2014, 118, 225-238.	1.4	34
122	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	7.7	627
123	Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathologica, 2014, 128, 137-149.	3.9	125
124	Generation of Neuronal Progenitor Cells in Response to Tumors in the Human Brain. Stem Cells, 2014, 32, 244-257.	1.4	12
125	Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica, 2014, 128, 279-289.	3.9	191
126	Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nature Genetics, 2014, 46, 39-44.	9.4	167

#	Article	IF	Citations
127	MRI Surrogates for Molecular Subgroups of Medulloblastoma. American Journal of Neuroradiology, 2014, 35, 1263-1269.	1.2	257
128	The G protein $\hat{l}\pm$ subunit G $\hat{l}\pm$ s is a tumor suppressor in Sonic hedgehogâ^'driven medulloblastoma. Nature Medicine, 2014, 20, 1035-1042.	15.2	110
129	The Shh Receptor Boc Promotes Progression of Early Medulloblastoma to Advanced Tumors. Developmental Cell, 2014, 31, 34-47.	3.1	43
130	Shh Signaling Protects Atoh1 from Degradation Mediated by the E3ÂUbiquitin Ligase Huwe1 in Neural Precursors. Developmental Cell, 2014, 29, 649-661.	3.1	71
131	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	0.8	263
132	CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathologica, 2014, 128, 291-303.	3.9	141
133	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	13.7	520
134	Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma. Cancer Cell, 2014, 26, 33-47.	7.7	241
135	Response. Journal of Neurosurgery, 2014, 121, 1433.	0.9	0
136	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.	3.9	244
137	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	3.9	169
138	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	5.1	307
139	Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like Kinases. Cancer Research, 2013, 73, 6310-6322.	0.4	52
140	ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma. Experimental Hematology and Oncology, 2013, 2, 26.	2.0	36
141	The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation. Cell, 2013, 153, 1064-1079.	13.5	348
142	Somatostatin receptor subtype 2 (sst2) is a potential prognostic marker and a therapeutic target in medulloblastoma. Child's Nervous System, 2013, 29, 1253-1262.	0.6	12
143	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	3.9	146
144	Epigenetic Silencing of DKK3 in Medulloblastoma. International Journal of Molecular Sciences, 2013, 14, 7492-7505.	1.8	18

#	Article	IF	Citations
145	Medulloblastoma molecular dissection. Current Opinion in Oncology, 2013, 25, 674-681.	1.1	54
146	<i>Sleeping Beauty</i> mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4325-34.	3.3	62
147	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	0.8	381
148	G-protein coupled receptor expression patterns delineate medulloblastoma subgroups. Acta Neuropathologica Communications, 2013, 1, 66.	2.4	22
149	Intertumoral and Intratumoral Heterogeneity as a Barrier for Effective Treatment of Medulloblastoma. Neurosurgery, 2013, 60, 57-63.	0.6	13
150	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	13.7	761
151	Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathologica, 2012, 123, 615-626.	3.9	318
152	DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis. Journal of Neuro-Oncology, 2012, 109, 415-423.	1.4	13
153	Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations. Cell, 2012, 148, 59-71.	13.5	743
154	The RNA-Binding Protein Musashi1 Affects Medulloblastoma Growth via a Network of Cancer-Related Genes and Is an Indicator of Poor Prognosis. American Journal of Pathology, 2012, 181, 1762-1772.	1.9	73
155	Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathologica, 2012, 123, 539-552.	3.9	145
156	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	13.7	765
157	Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 2012, 123, 515-527.	3.9	66
158	Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 2012, 123, 465-472.	3.9	1,536
159	MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathologica, 2012, 123, 529-538.	3.9	60
160	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	3.9	863
161	Adult Medulloblastoma Comprises Three Major Molecular Variants. Journal of Clinical Oncology, 2011, 29, 2717-2723.	0.8	215
162	Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma. Cancer Cell, 2011, 20, 143-157.	7.7	494

#	Article	IF	Citations
163	Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathologica, 2011, 121, 763-774.	3.9	211
164	Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 2011, 122, 231-240.	3.9	195
165	Functional characterization of a <i>BRAF</i> insertion mutant associated with pilocytic astrocytoma. International Journal of Cancer, 2011, 129, 2297-2303.	2.3	75
166	<i>FSTL5</i> Is a Marker of Poor Prognosis in Non-WNT/Non-SHH Medulloblastoma. Journal of Clinical Oncology, 2011, 29, 3852-3861.	0.8	143
167	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e348-e349.	0.8	2
168	An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. Journal of Clinical Investigation, 2011, 121, 1344-1348.	3.9	68
169	Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathologica, 2010, 120, 253-260.	3.9	129
170	Molecular Staging of Intracranial Ependymoma in Children and Adults. Journal of Clinical Oncology, 2010, 28, 3182-3190.	0.8	210
171	<i>TP53</i> Mutation Is Frequently Associated With <i>CTNNB1</i> Mutation or <i>MYCN</i> Amplification and Is Compatible With Long-Term Survival in Medulloblastoma. Journal of Clinical Oncology, 2010, 28, 5188-5196.	0.8	100
172	Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma. Cancer Research, 2010, 70, 8003-8014.	0.4	62
173	HDAC5 and HDAC9 in Medulloblastoma: Novel Markers for Risk Stratification and Role in Tumor Cell Growth. Clinical Cancer Research, 2010, 16, 3240-3252.	3.2	175
174	Adult and Pediatric Medulloblastomas Are Genetically Distinct and Require Different Algorithms for Molecular Risk Stratification. Journal of Clinical Oncology, 2010, 28, 3054-3060.	0.8	136
175	Outcome Prediction in Pediatric Medulloblastoma Based on DNA Copy-Number Aberrations of Chromosomes 6q and 17q and the <i>MYC</i> and <i>MYCN</i> Loci. Journal of Clinical Oncology, 2009, 27, 1627-1636.	0.8	274
176	Novel oncogene amplifications in tumors from a family with Li–Fraumeni syndrome. Genes Chromosomes and Cancer, 2009, 48, 558-568.	1.5	13
177	Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathologica, 2009, 117, 457-464.	3.9	106
178	Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathologica, 2009, 118, 401-405.	3.9	255
179	High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF- \hat{l}^2 and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood, 2009, 114, 1053-1062.	0.6	105
180	Accumulation of genomic aberrations during clinical progression of medulloblastoma. Acta Neuropathologica, 2008, 116, 383-390.	3.9	23

#	Article	IF	CITATIONS
181	BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. Journal of Clinical Investigation, 2008, 118, 1739-1749.	3.9	437
182	High-Resolution Genomic Profiling (array-CGH) of Childhood T-ALL Identifies Deletions at 6q15-16.1 as a Predictive Marker for Early Treatment Response Blood, 2008, 112, 1484-1484.	0.6	0
183	Supratentorial primitive neuroectodermal tumors of the central nervous system frequently harbor deletions of the CDKN2A locus and other genomic aberrations distinct from medulloblastomas. Genes Chromosomes and Cancer, 2007, 46, 839-851.	1.5	76