Peter Stacko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6895373/publications.pdf

Version: 2024-02-01

356 papers 31,207 citations

81 h-index 164 g-index

403 all docs

403 docs citations

403 times ranked 19844 citing authors

#	Article	IF	CITATIONS
1	Lightâ€Driven Spiral Deformation of Supramolecular Helical Microfibers by Localized Photoisomerization. Advanced Optical Materials, 2022, 10, 2101267.	7.3	6
2	Lightâ€gated binding in doubleâ€motorized porphyrin cages. Natural Sciences, 2022, 2, .	2.1	1
3	Highly Efficient Biobased Synthesis of Acrylic Acid. Angewandte Chemie, 2022, 134, .	2.0	9
4	Highly Efficient Biobased Synthesis of Acrylic Acid. Angewandte Chemie - International Edition, 2022, 61, .	13.8	32
5	Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. Science Advances, 2022, 8, eabk3286.	10.3	58
6	In situ EPR and Raman spectroscopy in the curing of bis-methacrylate–styrene resins. RSC Advances, 2022, 12, 2537-2548.	3.6	3
7	Disulfide-Mediated Reversible Polymerization toward Intrinsically Dynamic Smart Materials. Journal of the American Chemical Society, 2022, 144, 2022-2033.	13.7	140
8	Stereodivergent Chirality Transfer by Noncovalent Control of Disulfide Bonds. Journal of the American Chemical Society, 2022, 144, 4376-4382.	13.7	27
9	Controlling rotary motion of molecular motors based on oxindole. Organic Chemistry Frontiers, 2022, 9, 2084-2092.	4.5	9
10	A molecular motor from lignocellulose. Green Chemistry, 2022, 24, 3689-3696.	9.0	10
11	Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chemical Science, 2022, 13, 3263-3272.	7.4	9
12	Photoactuating Artificial Muscles of Motor Amphiphiles as an Extracellular Matrix Mimetic Scaffold for Mesenchymal Stem Cells. Journal of the American Chemical Society, 2022, 144, 3543-3553.	13.7	27
13	Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 4798-4817.	6.4	10
14	Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nature Photonics, 2022, 16, 226-234.	31.4	115
15	Dynamic Control of a Multistate Chiral Supramolecular Polymer in Water. Journal of the American Chemical Society, 2022, 144, 6019-6027.	13.7	36
16	Structure–Photoreactivity Relationship of 3-Hydroxyflavone-Based CO-Releasing Molecules. Journal of Organic Chemistry, 2022, 87, 4750-4763.	3.2	13
17	Structureâ€Activity Studies of Nitroreductaseâ€Responsive Nearâ€Infrared Heptamethine Cyanine Fluorescent Probes. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
18	Mechanistic Insight into Supramolecular Polymerization in Water Tunable by Molecular Geometry. CCS Chemistry, 2022, 4, 2212-2220.	7.8	7

#	Article	IF	CITATIONS
19	Computational Design, Synthesis, and Photochemistry of Cy7â€PPG, an Efficient NIRâ€Activated Photolabile Protecting Group for Therapeutic Applications**. Angewandte Chemie - International Edition, 2022, 61, e202201308.	13.8	17
20	A proof-of-concept study on the use of a fluorescein-based 18F-tracer for pretargeted PET. EJNMMI Radiopharmacy and Chemistry, 2022, 7, 3.	3.9	1
21	Computational Design, Synthesis, and Photochemistry of Cy7â€PPG, an Efficient NIRâ€Activated Photolabile Protecting Group for Therapeutic Applications**. Angewandte Chemie, 2022, 134, .	2.0	4
22	Transforming Dyes into Fluorophores: Excitonâ€Induced Emission with Chainâ€Iike Oligoâ€BODIPY Superstructures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
23	Photomodulation of Transmembrane Transport and Potential by Stiff-Stilbene Based Bis(thio)ureas. Journal of the American Chemical Society, 2022, 144, 331-338.	13.7	48
24	A light-fuelled nanoratchet shifts a coupled chemical equilibrium. Nature Nanotechnology, 2022, 17, 159-165.	31.5	41
25	P-chirogenic phosphorus compounds by stereoselective Pd-catalysed arylation of phosphoramidites. Nature Catalysis, 2022, 5, 10-19.	34.4	26
26	Cooperative light-induced breathing of soft porous crystals via azobenzene buckling. Nature Communications, 2022, 13, 1951.	12.8	33
27	Light-Control over Casein Kinase 1δ Activity with Photopharmacology: A Clear Case for Arylazopyrazole-Based Inhibitors. International Journal of Molecular Sciences, 2022, 23, 5326.	4.1	5
28	Photouncaging of Carboxylic Acids from Cyanine Dyes with Nearâ€Infrared Light**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
29	The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
30	Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization. Journal of the American Chemical Society, 2022, 144, 12421-12430.	13.7	22
31	Tuning of Morphology by Chirality in Selfâ€Assembled Structures of Bis(Urea) Amphiphiles in Water. Chemistry - A European Journal, 2021, 27, 326-330.	3.3	2
32	Stepwise Adsorption of Alkoxyâ€Pyrene Derivatives onto a Lamellar, Nonâ€Porous Naphthalenediimideâ€Template on HOPG. Chemistry - A European Journal, 2021, 27, 207-211.	3.3	3
33	Photoresponsive porous materials. Nanoscale Advances, 2021, 3, 24-40.	4.6	62
34	Selfâ€Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angewandte Chemie - International Edition, 2021, 60, 11604-11627.	13.8	81
35	Fast synthesis and redox switching of di- and tetra-substituted bisthioxanthylidene overcrowded alkenes. Chemical Communications, 2021, 57, 7665-7668.	4.1	1
36	Coordination mechanism of cyanine dyes on the surface of core@active shell β-NaGdF ₄ :Yb ³⁺ ,Er ³⁺ nanocrystals and its role in enhancing upconversion luminescence. Journal of Materials Chemistry C, 2021, 9, 16313-16323.	5 . 5	10

#	Article	IF	Citations
37	NON-EQUILIBRIUM SYSTEMS AND MOLECULAR MACHINES., 2021,,.		O
38	Biaryl sulfonamides as <i>cisoid</i> azosteres for photopharmacology. Chemical Communications, 2021, 57, 4126-4129.	4.1	9
39	Pd-catalyzed sp–sp3 cross-coupling of benzyl bromides using lithium acetylides. Chemical Communications, 2021, 57, 7529-7532.	4.1	6
40	Photo-crosslinking polymers by dynamic covalent disulfide bonds. Chemical Communications, 2021, 57, 9838-9841.	4.1	32
41	Structural Aspects of Photopharmacology: Insight into the Binding of Photoswitchable and Photocaged Inhibitors to the Glutamate Transporter Homologue. Journal of the American Chemical Society, 2021, 143, 1513-1520.	13.7	29
42	Photopharmacological Manipulation of Mammalian CRY1 for Regulation of the Circadian Clock. Journal of the American Chemical Society, 2021, 143, 2078-2087.	13.7	31
43	Tailoring the optical and dynamic properties of iminothioindoxyl photoswitches through acidochromism. Chemical Science, 2021, 12, 4588-4598.	7.4	13
44	Effect of charge-transfer enhancement on the efficiency and rotary mechanism of an oxindole-based molecular motor. Chemical Science, 2021, 12, 7486-7497.	7.4	22
45	Photophysics of First-Generation Photomolecular Motors: Resolving Roles of Temperature, Friction, and Medium Polarity. Journal of Physical Chemistry A, 2021, 125, 1711-1719.	2.5	8
46	Photoâ€responsive Helical Motion by Lightâ€Driven Molecular Motors in a Liquidâ€Crystal Network. Angewandte Chemie, 2021, 133, 8332-8338.	2.0	10
47	Excited State Structure Correlates with Efficient Photoconversion in Unidirectional Motors. Journal of Physical Chemistry Letters, 2021, 12, 3367-3372.	4.6	9
48	Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic. Pharmaceuticals, 2021, 14, 392.	3.8	10
49	Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angewandte Chemie - International Edition, 2021, 60, 11120-11126.	13.8	9
50	Absolute Configuration Determination from Low <i>ee</i> Compounds by the Crystalline Sponge Method. Unusual Conglomerate Formation in a Preâ€Determined Crystalline Lattice. Angewandte Chemie - International Edition, 2021, 60, 11809-11813.	13.8	7
51	Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides). Matter, 2021, 4, 1352-1364.	10.0	112
52	Multivalent Probes in Molecular Imaging: Reality or Future?. Trends in Molecular Medicine, 2021, 27, 379-393.	6.7	14
53	From Photoinduced Supramolecular Polymerization to Responsive Organogels. Journal of the American Chemical Society, 2021, 143, 5990-5997.	13.7	66
54	Reversible modulation of circadian time with chronophotopharmacology. Nature Communications, 2021, 12, 3164.	12.8	35

#	Article	IF	Citations
55	Direct Catalytic N â€Alkylation of αâ€Amino Acid Esters and Amides Using Alcohols with High Retention of Stereochemistry. ChemSusChem, 2021, 14, 2303-2307.	6.8	6
56	Ultrafast Photoclick Reaction for Selective ¹⁸ F-Positron Emission Tomography Tracer Synthesis in Flow. Journal of the American Chemical Society, 2021, 143, 10041-10047.	13.7	22
57	Motorized Macrocycle: A Photoâ€responsive Host with Switchable and Stereoselective Guest Recognition. Angewandte Chemie, 2021, 133, 16265-16274.	2.0	11
58	Synthesis of Enantioenriched Amines by Ironâ€Catalysed Amination of Alcohols Employing at Least One Achiral Substrate. Advanced Synthesis and Catalysis, 2021, 363, 5436-5442.	4.3	7
59	Motorized Macrocycle: A Photoâ€responsive Host with Switchable and Stereoselective Guest Recognition. Angewandte Chemie - International Edition, 2021, 60, 16129-16138.	13.8	57
60	Multistate Switching of Spin Selectivity in Electron Transport through Lightâ€Driven Molecular Motors. Advanced Science, 2021, 8, e2101773.	11.2	17
61	Predicting the substituent effects in the optical and electrochemical properties of N,N′-substituted isoindigos. Photochemical and Photobiological Sciences, 2021, 20, 927-938.	2.9	5
62	Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function. Chemical Reviews, 2021, 121, 13213-13237.	47.7	53
63	Rational design of a photoswitchable DNA glue enabling high regulatory function and supramolecular chirality transfer. Chemical Science, 2021, 12, 9207-9220.	7.4	21
64	Molecular photoswitches in aqueous environments. Chemical Society Reviews, 2021, 50, 12377-12449.	38.1	170
65	Exploring molecular motors. Materials Chemistry Frontiers, 2021, 5, 2900-2906.	5.9	35
66	Reductive stability evaluation of 6-azopurine photoswitches for the regulation of CKI \hat{l} ± activity and circadian rhythms. Organic and Biomolecular Chemistry, 2021, 19, 2312-2321.	2.8	15
67	Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles. Journal of the American Chemical Society, 2021, 143, 442-452.	13.7	72
68	Designing light-driven rotary molecular motors. Chemical Science, 2021, 12, 14964-14986.	7.4	85
69	Three-State Switching of an Anthracene Extended Bis-thiaxanthylidene with a Highly Stable Diradical State. Journal of the American Chemical Society, 2021, 143, 18020-18028.	13.7	15
70	Phenylimino Indolinone: A Greenâ€Lightâ€Responsive Tâ€Type Photoswitch Exhibiting Negative Photochromism. Angewandte Chemie - International Edition, 2021, 60, 25290-25295.	13.8	21
71	Photoremovable Protecting Groups: Across the Light Spectrum to Near-Infrared Absorbing Photocages. Chimia, 2021, 75, 873.	0.6	14
72	Stereodivergent Anion Binding Catalysis with Molecular Motors. Angewandte Chemie - International Edition, 2020, 59, 785-789.	13.8	60

#	Article	IF	Citations
73	Programming nanoparticle valence bonds with single-stranded DNA encoders. Nature Materials, 2020, 19, 781-788.	27. 5	166
74	Helix Inversion Controlled by Molecular Motors in Multistate Liquid Crystals. Advanced Materials, 2020, 32, e2004420.	21.0	48
75	Molecular motor-functionalized porphyrin macrocycles. Nature Communications, 2020, 11, 5291.	12.8	21
76	Supramolecular control of unidirectional rotary motion in a sterically overcrowded photoswitchable receptor. Organic Chemistry Frontiers, 2020, 7, 3874-3879.	4.5	13
77	Photoresponsive molecular tools for emerging applications of light in medicine. Chemical Science, 2020, 11, 11672-11691.	7.4	142
78	Synthesis of Core-Modified Third-Generation Light-Driven Molecular Motors. Journal of Organic Chemistry, 2020, 85, 10670-10680.	3.2	10
79	Palladium-catalysed cross-coupling of lithium acetylides. Nature Catalysis, 2020, 3, 664-671.	34.4	23
80	Controlled Diffusion of Photoswitchable Receptors by Binding Anti-electrostatic Hydrogen-Bonded Phosphate Oligomers. Journal of the American Chemical Society, 2020, 142, 20014-20020.	13.7	35
81	Correlating the Influence of Disulfides in Monolayers across Photoelectron Spectroscopy Wettability and Tunneling Charge-Transport. Journal of the American Chemical Society, 2020, 142, 15075-15083.	13.7	19
82	Deciphering the Structure–Property Relations in Substituted Heptamethine Cyanines. Journal of Organic Chemistry, 2020, 85, 9776-9790.	3.2	56
83	Bottom-Up: Can Supramolecular Tools Deliver Responsiveness from Molecular Motors to Macroscopic Materials?. Matter, 2020, 3, 355-370.	10.0	58
84	A Chemically Driven Rotary Molecular Motor Based on Reversible Lactone Formation with Perfect Unidirectionality. CheM, 2020, 6, 2420-2429.	11.7	27
85	Powering rotary molecular motors with low-intensity near-infrared light. Science Advances, 2020, 6, .	10.3	24
86	Cyanineâ€Flavonol Hybrids for Nearâ€Infrared Lightâ€Activated Delivery of Carbon Monoxide. Chemistry - A European Journal, 2020, 26, 13184-13190.	3.3	37
87	All-Photochemical Rotation of Molecular Motors with a Phosphorus Stereoelement. Journal of the American Chemical Society, 2020, 142, 16868-16876.	13.7	27
88	Combinatorial Selection Among Geometrical Isomers of Discrete Long-Carbon-Chain Naphthalenediimides Induces Local Order at the Liquid/Solid Interface. ACS Nano, 2020, 14, 13865-13875.	14.6	4
89	General Principles for the Design of Visibleâ€Lightâ€Responsive Photoswitches: Tetraâ€ <i>ortho</i> â€Chloroâ€Azobenzenes. Angewandte Chemie - International Edition, 2020, 59, 21663-21670.	13.8	80
90	Towards artificial molecular factories from framework-embedded molecular machines. Nature Reviews Chemistry, 2020, 4, 550-562.	30.2	97

#	Article	IF	CITATIONS
91	General Principles for the Design of Visibleâ€Lightâ€Responsive Photoswitches: Tetraâ€ <i>ortho</i> â€Chloroâ€Azobenzenes. Angewandte Chemie, 2020, 132, 21847-21854.	2.0	26
92	A coating from nature. Science Advances, 2020, 6, .	10.3	35
93	Photoinduced swing of a diarylethene thin broad sword shaped crystal: a study on the detailed mechanism. Chemical Science, 2020, 11, 12307-12315.	7.4	29
94	Phosphoramidite-based photoresponsive ligands displaying multifold transfer of chirality in dynamic enantioselective metal catalysis. Nature Catalysis, 2020, 3, 488-496.	34.4	35
95	Dynamic Assemblies of Molecular Motor Amphiphiles Control Macroscopic Foam Properties. Journal of the American Chemical Society, 2020, 142, 10163-10172.	13.7	38
96	Light-induced molecular rotation triggers on-demand release from liposomes. Chemical Communications, 2020, 56, 8774-8777.	4.1	15
97	Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nature Chemistry, 2020, 12, 595-602.	13.6	65
98	Toughening a Selfâ€Healable Supramolecular Polymer by Ionic Clusterâ€Enhanced Ironâ€Carboxylate Complexes. Angewandte Chemie - International Edition, 2020, 59, 5278-5283.	13.8	173
99	Vision Statement: Materials in Motion. Advanced Materials, 2020, 32, e1906416.	21.0	24
100	Toughening a Selfâ€Healable Supramolecular Polymer by Ionic Clusterâ€Enhanced Ironâ€Carboxylate Complexes. Angewandte Chemie, 2020, 132, 5316-5321.	2.0	57
101	Synthesis and Functionalization of Allenes by Direct Pdâ€Catalyzed Organolithium Crossâ€Coupling. Angewandte Chemie - International Edition, 2020, 59, 7823-7829.	13.8	23
102	Ultrafast Excited State Dynamics in a First Generation Photomolecular Motor. ChemPhysChem, 2020, 21, 594-599.	2.1	13
103	Mechanisms of Orthogonal Photodecarbonylation Reactions of 3-Hydroxyflavone-Based Acid–Base Forms. Journal of Organic Chemistry, 2020, 85, 3527-3537.	3.2	27
104	Engineering Long-Range Order in Supramolecular Assemblies on Surfaces: The Paramount Role of Internal Double Bonds in Discrete Long-Chain Naphthalenediimides. Journal of the American Chemical Society, 2020, 142, 4070-4078.	13.7	19
105	Unidirectional rotating molecular motors dynamically interact with adsorbed proteins to direct the fate of mesenchymal stem cells. Science Advances, 2020, 6, eaay2756.	10.3	42
106	Modular Medical Imaging Agents Based on Azide–Alkyne Huisgen Cycloadditions: Synthesis and Preâ€Clinical Evaluation of ¹⁸ F‣abeled PSMAâ€Tracers for Prostate Cancer Imaging. Chemistry - A European Journal, 2020, 26, 10871-10881.	3.3	13
107	Modulation of a Supramolecular Figureâ€ofâ€Eight Strip Based on a Photoswitchable Stiffâ€Stilbene. Chemistry - A European Journal, 2020, 26, 7783-7787.	3.3	12
108	Visible-Light-Driven Rotation of Molecular Motors in a Dual-Function Metal–Organic Framework Enabled by Energy Transfer. Journal of the American Chemical Society, 2020, 142, 9048-9056.	13.7	86

#	Article	IF	CITATIONS
109	Red-light-sensitive BODIPY photoprotecting groups for amines and their biological application in controlling heart rhythm. Chemical Communications, 2020, 56, 5480-5483.	4.1	53
110	Photoefficient 2 nd generation molecular motors responsive to visible light. Chemical Science, 2019, 10, 8768-8773.	7.4	37
111	Salenâ€Based Amphiphiles: Directing Selfâ€Assembly in Water by Metal Complexation. Angewandte Chemie - International Edition, 2019, 58, 14935-14939.	13.8	9
112	Reorganization from Kinetically Stable Aggregation States to Thermodynamically Stable Nanotubes of BINOL-Derived Amphiphiles in Water. Langmuir, 2019, 35, 11821-11828.	3.5	4
113	Object Transportation System Mimicking the Cilia of Paramecium aurelia Making Use of the Lightâ€Controllable Crystal Bending Behavior of a Photochromic Diarylethene. Angewandte Chemie - International Edition, 2019, 58, 13308-13312.	13.8	27
114	Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions. Journal of the American Chemical Society, 2019, 141, 12804-12814.	13.7	190
115	Light-driven Molecular Motors on Surfaces for Single Molecular Imaging. Journal of Visualized Experiments, 2019, , .	0.3	1
116	Lightâ€Modulated Selfâ€Blockage of a Urea Binding Site in a Stiffâ€Stilbene Based Anion Receptor. ChemPhysChem, 2019, 20, 3306-3310.	2.1	19
117	Controlling the Circadian Clock with High Temporal Resolution through Photodosing. Journal of the American Chemical Society, 2019, 141, 15784-15791.	13.7	37
118	An atom efficient synthesis of tamoxifen. Organic and Biomolecular Chemistry, 2019, 17, 2315-2320.	2.8	8
119	Light-controlled inhibition of BRAFV600E kinase. European Journal of Medicinal Chemistry, 2019, 179, 133-146.	5.5	31
120	Murahashi Crossâ€Coupling at â^'78 °C: A Oneâ€Pot Procedure for Sequential Câ^'C/Câ^'C, Câ^'C/Câ^'N, and Câ^'C/Câ^'S Crossâ€Coupling of Bromoâ€Chloroâ€Arenes. Chemistry - A European Journal, 2019, 25, 9180-9184.	3.3	19
121	Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range. Nature Communications, 2019, 10, 2390.	12.8	63
122	Dualâ€Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angewandte Chemie - International Edition, 2019, 58, 10985-10989.	13.8	38
123	Synthesis of Substituted Benzaldehydes via a Two-Step, One-Pot Reduction/Cross-Coupling Procedure. Organic Letters, 2019, 21, 4087-4091.	4.6	6
124	Approach to a Substituted Heptamethine Cyanine Chain by the Ring Opening of Zincke Salts. Journal of the American Chemical Society, 2019, 141, 7155-7162.	13.7	49
125	Visible-Light-Driven Tunable Molecular Motors Based on Oxindole. Journal of the American Chemical Society, 2019, 141, 7622-7627.	13.7	53
126	Photoswitchable catalysis based on the isomerisation of double bonds. Chemical Communications, 2019, 55, 6477-6486.	4.1	118

#	Article	IF	Citations
127	Unidirectional rotary motion in a metal–organic framework. Nature Nanotechnology, 2019, 14, 488-494.	31.5	162
128	Molecular Memory: Chemical Locking in Molecular Tunneling Junctions Enables Nonvolatile Memory with Large On–Off Ratios (Adv. Mater. 15/2019). Advanced Materials, 2019, 31, 1970111.	21.0	0
129	Pumping a Ring-Sliding Molecular Motion by a Light-Powered Molecular Motor. Journal of Organic Chemistry, 2019, 84, 5790-5802.	3.2	34
130	Taming the Complexity of Donor–Acceptor Stenhouse Adducts: Infrared Motion Pictures of the Complete Switching Pathway. Journal of the American Chemical Society, 2019, 141, 7376-7384.	13.7	66
131	Comparative Study of Photoswitchable Zincâ€Finger Domain and ATâ€Hook Motif for Lightâ€Controlled Peptide–DNA Binding. Chemistry - A European Journal, 2019, 25, 4965-4973.	3.3	12
132	One-pot, modular approach to functionalized ketones <i>via</i> nucleophilic addition/Buchwaldâ€"Hartwig amination strategy. Chemical Communications, 2019, 55, 2908-2911.	4.1	7
133	A chiral self-sorting photoresponsive coordination cage based on overcrowded alkenes. Beilstein Journal of Organic Chemistry, 2019, 15, 2767-2773.	2.2	36
134	A Visibleâ€Lightâ€Driven Molecular Motor Based on Pyrene. Helvetica Chimica Acta, 2019, 102, e1800221.	1.6	13
135	Axially Chiral Monodentate Phosphorus Ligands for Asymmetric Metal-Catalyzed Reactions. , 2019, , 249-377.		0
136	The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. Chemical Society Reviews, 2018, 47, 1910-1937.	38.1	208
137	Mapping the Excited-State Potential Energy Surface of a Photomolecular Motor. Angewandte Chemie - International Edition, 2018, 57, 6203-6207.	13.8	26
138	Green-Light-Sensitive BODIPY Photoprotecting Groups for Amines. Journal of Organic Chemistry, 2018, 83, 1819-1827.	3.2	56
139	Tailoring Photoisomerization Pathways in Donor–Acceptor Stenhouse Adducts: The Role of the Hydroxy Group. Journal of Physical Chemistry A, 2018, 122, 955-964.	2.5	54
140	Molecular rotary motors: Unidirectional motion around double bonds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9423-9431.	7.1	165
141	Stereospecific Ring Contraction of Bromocycloheptenes through Dyotropic Rearrangements via Nonclassical Carbocation–Anion Pairs. Journal of the American Chemical Society, 2018, 140, 4986-4990.	13.7	17
142	Photoswitching of DNA Hybridization Using a Molecular Motor. Journal of the American Chemical Society, 2018, 140, 5069-5076.	13.7	70
143	Highly Efficient and Robust Enantioselective Liquid–Liquid Extraction of 1,2â€Amino Alcohols utilizing VAPOL―and VANOLâ€based Phosphoric Acid Hosts. ChemSusChem, 2018, 11, 178-184.	6.8	6
144	Fast, Efficient and Low Eâ€Factor Oneâ€Pot Palladiumâ€Catalyzed Crossâ€Coupling of (Hetero)Arenes. Angewandte Chemie - International Edition, 2018, 57, 9452-9455.	13.8	20

#	Article	IF	Citations
145	Braking of a Lightâ€Driven Molecular Rotary Motor by Chemical Stimuli. Chemistry - A European Journal, 2018, 24, 81-84.	3.3	25
146	Central-to-Helical-to-Axial-to-Central Transfer of Chirality with a Photoresponsive Catalyst. Journal of the American Chemical Society, 2018, 140, 17278-17289.	13.7	57
147	Supramolecular Packing and Macroscopic Alignment Controls Actuation Speed in Macroscopic Strings of Molecular Motor Amphiphiles. Journal of the American Chemical Society, 2018, 140, 17724-17733.	13.7	46
148	Photoactivation of MDM2 Inhibitors: Controlling Protein–Protein Interaction with Light. Journal of the American Chemical Society, 2018, 140, 13136-13141.	13.7	35
149	Lightâ€Gated Rotation in a Molecular Motor Functionalized with a Dithienylethene Switch. Angewandte Chemie - International Edition, 2018, 57, 10515-10519.	13.8	56
150	Glutamate Transporter Inhibitors with Photoâ€Controlled Activity. Advanced Therapeutics, 2018, 1, 1800028.	3.2	17
151	Supramolecularly directed rotary motion in a photoresponsive receptor. Nature Communications, 2018, 9, 1984.	12.8	54
152	Desymmetrization of <i>meso</i> -Dibromocycloalkenes through Copper(I)-Catalyzed Asymmetric Allylic Substitution with Organolithium Reagents. Journal of the American Chemical Society, 2018, 140, 7052-7055.	13.7	26
153	Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nature Chemistry, 2018, 10, 132-138.	13.6	330
154	Solvent Effects on the Actinic Step of Donor–Acceptor Stenhouse Adduct Photoswitching. Angewandte Chemie - International Edition, 2018, 57, 8063-8068.	13.8	70
155	Photocontrolled Fluorescence "Double-Check―Bioimaging Enabled by a Glycoprobe–Protein Hybrid. Journal of the American Chemical Society, 2018, 140, 8671-8674.	13.7	116
156	Visible to NIR Light Photoactivation of Hydrogen Sulfide for Biological Targeting. Organic Letters, 2018, 20, 4907-4911.	4.6	50
157	Photosensitized Cross-Linking of Tryptophan and Tyrosine Derivatives by Rose Bengal in Aqueous Solutions. Journal of Organic Chemistry, 2018, 83, 10835-10844.	3.2	12
158	Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Science Advances, 2018, 4, eaat8192.	10.3	422
159	Design, Synthesis, and Isomerization Studies of Light-Driven Molecular Motors for Single Molecular Imaging. Journal of Organic Chemistry, 2018, 83, 6025-6034.	3.2	16
160	Molecular Motors in Aqueous Environment. Journal of Organic Chemistry, 2018, 83, 11008-11018.	3.2	30
161	Cation-Modulated Rotary Speed in a Light-Driven Crown Ether Functionalized Molecular Motor. Organic Letters, 2018, 20, 3715-3718.	4.6	19
162	Solvent Mixing To Induce Molecular Motor Aggregation into Bowl-Shaped Particles: Underlying Mechanism, Particle Nature, and Application To Control Motor Behavior. Journal of the American Chemical Society, 2018, 140, 7860-7868.	13.7	40

#	Article	IF	Citations
163	EXPLORING CHEMICAL SPACE IN HOMOGENEOUS CATALYSIS., 2018,,.		O
164	Photocontrol of Anion Binding Affinity to a Bis-urea Receptor Derived from Stiff-Stilbene. Organic Letters, 2017, 19, 324-327.	4.6	61
165	Cu-catalyzed enantioselective allylic alkylation with organolithium reagents. Nature Protocols, 2017, 12, 493-505.	12.0	7
166	Recent developments in reversible photoregulation of oligonucleotide structure and function. Chemical Society Reviews, 2017, 46, 1052-1079.	38.1	263
167	Arylazoindazole Photoswitches: Facile Synthesis and Functionalization via S _N Ar Substitution. Journal of the American Chemical Society, 2017, 139, 3328-3331.	13.7	50
168	Ultrafast Excited State Dynamics in Molecular Motors: Coupling of Motor Length to Medium Viscosity. Journal of Physical Chemistry A, 2017, 121, 2138-2150.	2.5	18
169	Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core. Organic Letters, 2017, 19, 1402-1405.	4.6	45
170	Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Crossâ€Coupling of Organolithium Reagents. Angewandte Chemie - International Edition, 2017, 56, 3354-3359.	13.8	62
171	Artificial molecular motors. Chemical Society Reviews, 2017, 46, 2592-2621.	38.1	698
172	Defocused Imaging of UV-Driven Surface-Bound Molecular Motors. Journal of the American Chemical Society, 2017, 139, 7156-7159.	13.7	27
173	Ultrafast Dynamics in Light-Driven Molecular Rotary Motors Probed by Femtosecond Stimulated Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 7408-7414.	13.7	7 5
174	Asymmetric Synthesis of Second-Generation Light-Driven Molecular Motors. Journal of Organic Chemistry, 2017, 82, 5027-5033.	3.2	14
175	Third-Generation Light-Driven Symmetric Molecular Motors. Journal of the American Chemical Society, 2017, 139, 9650-9661.	13.7	54
176	Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones. Chemical Reviews, 2017, 117, 10502-10566.	47.7	311
177	Cold Snapshot of a Molecular Rotary Motor Captured by Highâ€Resolution Rotational Spectroscopy. Angewandte Chemie - International Edition, 2017, 56, 11209-11212.	13.8	22
178	Locked synchronous rotor motion in a molecular motor. Science, 2017, 356, 964-968.	12.6	114
179	Fluorineâ€Substituted Molecular Motors with a Quaternary Stereogenic Center. Chemistry - A European Journal, 2017, 23, 6643-6653.	3.3	12
180	Bidirectional Photomodulation of Surface Tension in Langmuir Films. Angewandte Chemie - International Edition, 2017, 56, 291-296.	13.8	13

#	Article	IF	Citations
181	Bidirectional Photomodulation of Surface Tension in Langmuir Films. Angewandte Chemie, 2017, 129, 297-302.	2.0	8
182	Artificial microtubules burst with energy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11804-11805.	7.1	1
183	Shedding Light on the Photoisomerization Pathway of Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society, 2017, 139, 15596-15599.	13.7	88
184	Remote light-controlled intracellular target recognition by photochromic fluorescent glycoprobes. Nature Communications, 2017, 8, 987.	12.8	141
185	Two-Step, One-Pot Synthesis of Visible-Light-Responsive 6-Azopurines. Organic Letters, 2017, 19, 5090-5093.	4.6	31
186	Highly efficient enantioselective liquid–liquid extraction of 1,2-amino-alcohols using SPINOL based phosphoric acid hosts. Chemical Science, 2017, 8, 6409-6418.	7.4	17
187	The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angewandte Chemie - International Edition, 2017, 56, 11060-11078.	13.8	568
188	Proof of concept for continuous enantioselective liquid–liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent. Green Chemistry, 2017, 19, 4334-4343.	9.0	14
189	Die Kunst, klein zu bauen: von molekularen Schaltern bis zu Motoren (Nobelâ€Aufsatz). Angewandte Chemie, 2017, 129, 11206-11226.	2.0	124
190	Direct N-alkylation of unprotected amino acids with alcohols. Science Advances, 2017, 3, eaao6494.	10.3	82
191	Dynamic control of function by light-driven molecular motors. Nature Reviews Chemistry, 2017, 1, .	30.2	162
192	Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation. Journal of the American Chemical Society, 2017, 139, 17979-17986.	13.7	224
193	Surface Inclusion of Unidirectional Molecular Motors in Hexagonal Tris(<i>o</i> -phenylene)cyclotriphosphazene. Journal of the American Chemical Society, 2017, 139, 10486-10498.	13.7	52
194	Unravelling the electronic structure and dynamics of an isolated molecular rotary motor in the gas-phase. Chemical Science, 2017, 8, 6141-6148.	7.4	13
195	Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nature Chemistry, 2017, 9, 250-256.	13.6	187
196	Bifunctional Molecular Photoswitches Based on Overcrowded Alkenes for Dynamic Control of Catalytic Activity in Michael Addition Reactions. Chemistry - A European Journal, 2017, 23, 6174-6184.	3.3	29
197	Enantiopure Functional Molecular Motors Obtained by a Switchable Chiralâ€Resolution Process. Chemistry - A European Journal, 2016, 22, 7054-7058.	3.3	17
198	Palladium atalyzed, <i>tertâ€</i> Butyllithiumâ€Mediated Dimerization of Aryl Halides and Its Application in the Atropselective Total Synthesis of Mastigophoreneâ€A. Angewandte Chemie - International Edition, 2016, 55, 3620-3624.	13.8	47

#	Article	IF	Citations
199	On the Role of Viscosity in the Eyring Equation. ChemPhysChem, 2016, 17, 1819-1822.	2.1	17
200	Nickelâ€Catalyzed Crossâ€Coupling of Organolithium Reagents with (Hetero)Aryl Electrophiles. Chemistry - A European Journal, 2016, 22, 3991-3995.	3.3	63
201	Reversible gel–sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chemical Science, 2016, 7, 4341-4346.	7.4	78
202	Unraveling the Photoswitching Mechanism in Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society, 2016, 138, 6344-6347.	13.7	143
203	Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor. Journal of the American Chemical Society, 2016, 138, 13597-13603.	13.7	80
204	Direct Observation of a Dark State in the Photocycle of a Light-Driven Molecular Motor. Journal of Physical Chemistry A, 2016, 120, 8606-8612.	2.5	36
205	Solvent effects on the thermal isomerization of a rotary molecular motor. Physical Chemistry Chemical Physics, 2016, 18, 26725-26735.	2.8	18
206	Direct and Versatile Synthesis of Redâ€Shifted Azobenzenes. Angewandte Chemie - International Edition, 2016, 55, 13514-13518.	13.8	115
207	End-capping of amphiphilic nanotubes with phospholipid vesicles: impact of the phospholipid on the cap formation and vesicle loading under osmotic conditions. Chemical Communications, 2016, 52, 11697-11700.	4.1	9
208	Enantioselective Synthesis of Di- and Tri-Arylated All-Carbon Quaternary Stereocenters via Copper-Catalyzed Allylic Arylations with Organolithium Compounds. ACS Catalysis, 2016, 6, 6591-6595.	11.2	22
209	Spectroscopic and Theoretical Identification of Two Thermal Isomerization Pathways for Bistable Chiral Overcrowded Alkenes. Chemistry - A European Journal, 2016, 22, 13478-13487.	3.3	30
210	Dynamic Responsive Systems for Catalytic Function. Chemistry - A European Journal, 2016, 22, 17080-17111.	3.3	103
211	Emerging Targets in Photopharmacology. Angewandte Chemie - International Edition, 2016, 55, 10978-10999.	13.8	504
212	Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents. Nature Communications, 2016, 7, 11698.	12.8	51
213	Orthogonal photoswitching in a multifunctional molecular system. Nature Communications, 2016, 7, 12054.	12.8	174
214	Dynamic Inversion of Stereoselective Phosphate Binding to a Bisurea Receptor Controlled by Light and Heat. Angewandte Chemie - International Edition, 2016, 55, 1001-1004.	13.8	71
215	Towards Redoxâ€Driven Unidirectional Molecular Motion. ChemPhysChem, 2016, 17, 1895-1901.	2.1	15
216	A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nature Chemistry, 2016, 8, 860-866.	13.6	142

#	Article	IF	Citations
217	Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols. ACS Catalysis, 2016, 6, 381-388.	11.2	206
218	One-Pot, Modular Approach to Functionalized Ketones via Nucleophilic Addition of Alkyllithium Reagents to Benzamides and Pd-Catalyzed α-Arylation. ACS Catalysis, 2016, 6, 2622-2625.	11.2	7
219	Amphiphilic Molecular Motors for Responsive Aggregation in Water. Journal of the American Chemical Society, 2016, 138, 660-669.	13.7	101
220	Chiral Diarylmethanes via Copper-Catalyzed Asymmetric Allylic Arylation with Organolithium Compounds. Organic Letters, 2016, 18, 252-255.	4.6	42
221	Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis. Angewandte Chemie - International Edition, 2015, 54, 15122-15127.	13.8	21
222	Visibleâ€Lightâ€Driven Photoisomerization and Increased Rotation Speed of a Molecular Motor Acting as a Ligand in a Ruthenium(II) Complex. Angewandte Chemie - International Edition, 2015, 54, 11457-11461.	13.8	63
223	<i>t</i> BuLiâ€Mediated Oneâ€Pot Direct Highly Selective Crossâ€Coupling of Two Distinct Aryl Bromides. Chemistry - A European Journal, 2015, 21, 15520-15524.	3.3	14
224	Light and heat control over secondary structure and amyloid-like fiber formation in an overcrowded-alkene-modified Trp zipper. Chemical Science, 2015, 6, 7311-7318.	7.4	26
225	Regio- and Enantioselective Copper-Catalyzed Allylic Alkylation of Ortho-Substituted Cinnamyl Bromides with Grignard Reagents. Journal of Organic Chemistry, 2015, 80, 4981-4984.	3.2	9
226	Palladium-Catalyzed C(<i>sp</i> ³)–C(<i>sp</i> ²) Cross-Coupling of (Trimethylsilyl)methyllithium with (Hetero)Aryl Halides. Organic Letters, 2015, 17, 2262-2265.	4.6	36
227	Catalytic Asymmetric Synthesis of Phosphine Boronates. Angewandte Chemie - International Edition, 2015, 54, 7867-7871.	13.8	41
228	Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nature Communications, 2015, 6, 6652.	12.8	172
229	Unidirectional rotary motion in achiral molecular motors. Nature Chemistry, 2015, 7, 890-896.	13.6	134
230	Ciprofloxacin–Photoswitch Conjugates: A Facile Strategy for Photopharmacology. Bioconjugate Chemistry, 2015, 26, 2592-2597.	3.6	86
231	Direct catalytic cross-coupling of alkenyllithium compounds. Chemical Science, 2015, 6, 1394-1398.	7.4	64
232	Transition metal functionalized photo- and redox-switchable diarylethene based molecular switches. Coordination Chemistry Reviews, 2015, 282-283, 77-86.	18.8	80
233	Regioselective Synthesis of Indanones. Synlett, 2014, 25, 1717-1720.	1.8	4
234	Multi-State Regulation of the Dihydrogen Phosphate Binding Affinity to a Light- and Heat-Responsive Bis-Urea Receptor. Journal of the American Chemical Society, 2014, 136, 16784-16787.	13.7	78

#	Article	IF	Citations
235	Iron catalysed direct alkylation of amines with alcohols. Nature Communications, 2014, 5, 5602.	12.8	363
236	cerebral beta-adrenoceptors. Nuclear Medicine and Biology, 2014, 41, 203-209.	0.6	3
237	Photopharmacology: Beyond Proof of Principle. Journal of the American Chemical Society, 2014, 136, 2178-2191.	13.7	875
238	Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents. Chemical Science, 2014, 5, 1361.	7.4	73
239	Facile assembly of light-driven molecular motors onto a solid surface. Chemical Communications, 2014, 50, 12641-12644.	4.1	18
240	Asymmetric synthesis of N,O-heterocycles via enantioselective iridium-catalysed intramolecular allylic amidation. Chemical Science, 2014, 5, 4216-4220.	7.4	27
241	Control of Surface Wettability Using Tripodal Light-Activated Molecular Motors. Journal of the American Chemical Society, 2014, 136, 3219-3224.	13.7	131
242	Oneâ€Step <i>C</i> â€Terminal Deprotection and Activation of Peptides with Peptide Amidase from <i>Stenotrophomonas maltophilia</i> in Neat Organic Solvent. Advanced Synthesis and Catalysis, 2014, 356, 2197-2202.	4.3	7
243	Textures of cholesteric droplets controlled by photo-switching chirality at the molecular level. Journal of Materials Chemistry C, 2014, 2, 8137-8141.	5.5	24
244	Molecular Stirrers in Action. Journal of the American Chemical Society, 2014, 136, 14924-14932.	13.7	54
245	Chemically Optimizing Operational Efficiency of Molecular Rotary Motors. Journal of the American Chemical Society, 2014, 136, 9692-9700.	13.7	96
246	Structural Dynamics of Overcrowded Alkene-Based Molecular Motors during Thermal Isomerization. Journal of Organic Chemistry, 2014, 79, 927-935.	3.2	49
247	Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chemical Communications, 2014, 50, 7773.	4.1	90
248	Selective Catalytic Oxidation of Alcohols, Aldehydes, Alkanes and Alkenes Employing Manganese Catalysts and Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2013, 355, 2591-2603.	4.3	46
249	Molecular switches and motors. , 2013, , .		2
250	An Improved Method for Siteâ€Specific End Modification of Zeolite L for the Formation of Zeolite L and Gold Nanoparticle Selfâ€Assembled Structures. Particle and Particle Systems Characterization, 2013, 30, 273-279.	2.3	16
251	In situ monitoring of polymerredox states by resonance \hat{l} /4Raman spectroscopy and its applications in polymer modified microfluidic channels. Analytical Methods, 2012, 4, 73-79.	2.7	6
252	Carbon–Carbon Bond Cleavage in Fluorescent Pyronin Analogues Induced by Yellow Light. Organic Letters, 2012, 14, 4918-4921.	4.6	26

#	Article	lF	Citations
253	Driving Unidirectional Molecular Rotary Motors with Visible Light by Intra- And Intermolecular Energy Transfer from Palladium Porphyrin. Journal of the American Chemical Society, 2012, 134, 17613-17619.	13.7	99
254	Preparation of dispersible graphene through organic functionalization of graphene using a zwitterion intermediate cycloaddition approach. RSC Advances, 2012, 2, 12173.	3.6	12
255	Ultrafast dynamics in the power stroke of a molecular rotary motor. Nature Chemistry, 2012, 4, 547-551.	13.6	168
256	Oxidation of Alkenes with H ₂ O ₂ by an in-Situ Prepared Mn(II)/Pyridine-2-carboxylic Acid Catalyst and the Role of Ketones in Activating H ₂ O ₂ . ACS Catalysis, 2012, 2, 1087-1096.	11.2	43
257	Reversible photochemical control of cholesteric liquid crystals with a diamine-based diarylethene chiroptical switch. Journal of Materials Chemistry, 2011, 21, 3142.	6.7	52
258	Electronic-State Switching Strategy in the Photochemical Synthesis of Indanones fromo-Methyl Phenacyl Epoxides. Organic Letters, 2011, 13, 6556-6559.	4.6	10
259	Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor. Science, 2011, 331, 1429-1432.	12.6	530
260	Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature, 2011, 479, 208-211.	27.8	669
261	Kinetic Resolution of αâ€Bromoamides: Experimental and Theoretical Investigation of Highly Enantioselective Reactions Catalyzed by Haloalkane Dehalogenases. Advanced Synthesis and Catalysis, 2011, 353, 931-944.	4.3	35
262	Controlling Self-Assembly in Space and Time. , 2010, , 453-461.		0
263	Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chemical Society Reviews, 2010, 39, 354-378.	38.1	209
264	Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation. Topics in Catalysis, 2010, 53, 1002-1008.	2.8	35
265	Catalytic Asymmetric Synthesis of Mycolipenic and Mycolipanolic Acid. European Journal of Organic Chemistry, 2010, 2010, 38-41.	2.4	19
266	The Use of <i>N</i> â€Type Ligands in the Enantioselective Liquid–Liquid Extraction of Underivatized Amino Acids. European Journal of Organic Chemistry, 2010, 2010, 5197-5202.	2.4	11
267	Rutheniumâ€Catalysed Hydrogenation of Aromatic Ketones using Monodentate Phosphoramidite Ligands. Advanced Synthesis and Catalysis, 2010, 352, 2621-2628.	4.3	9
268	Combining Designer Cells and Click Chemistry for a Oneâ€Pot Fourâ€Step Preparation of Enantiopure βâ€Hydroxytriazoles. Advanced Synthesis and Catalysis, 2010, 352, 2111-2115.	4.3	51
269	Phosphoramidites: Privileged Ligands in Asymmetric Catalysis. Angewandte Chemie - International Edition, 2010, 49, 2486-2528.	13.8	611
270	Springing into action. Nature Chemistry, 2010, 2, 429-430.	13.6	12

#	Article	IF	Citations
271	Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chemical Science, 2010, 1, 97.	7.4	55
272	Spontaneous generation and patterning of chiral polymeric surface toroids. Chemical Science, 2010, 1, 469.	7.4	17
273	Lightâ€driven rotary molecular motors: an ultrafast optical study. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 181-184.	0.8	49
274	Nano-electronic switches: Light-induced switching of the conductance of molecular systems. Journal of Materials Chemistry, 2009, 19, 7168.	6.7	84
275	Making molecular machines work., 2009,, 79-89.		7
276	On the effect of donor and acceptor substituents on the behaviour of light-driven rotary molecular motors. Organic and Biomolecular Chemistry, 2008, 6, 1605.	2.8	47
277	Control of dynamic helicity at the macro- and supramolecular level. Soft Matter, 2008, 4, 1349.	2.7	238
278	Macromolecules flex their muscles. Nature Nanotechnology, 2008, 3, 383-384.	31.5	26
279	Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. Journal of Materials Chemistry, 2008, 18, 2065.	6.7	83
280	Copper-catalyzed asymmetric allylic substitution reactions with organozinc and Grignard reagents. Pure and Applied Chemistry, 2008, 80, 1025-1037.	1.9	60
281	The Art of Building Small:  From Molecular Switches to Molecular Motors. Journal of Organic Chemistry, 2007, 72, 6635-6652.	3.2	462
282	Characterization by X-ray Photoemission Spectroscopy of the Open and Closed Forms of a Dithienylethene Switch in Thin Films. Journal of Physical Chemistry C, 2007, 111, 16533-16537.	3.1	14
283	Asymmetric allylation of aryl aldehydes: studies on the scope and mechanism of the palladium catalysed diethylzinc mediated umpolung using phosphoramidite ligands. Organic and Biomolecular Chemistry, 2006, 4, 1278.	2.8	71
284	Making molecular machines work. Nature Nanotechnology, 2006, 1, 25-35.	31.5	1,317
285	Asymmetric Synthesis of Bi(thio)xanthylidene Overcrowded Alkenes. European Journal of Organic Chemistry, 2006, 2006, 3596-3605.	2.4	12
286	Highly Enantio- and Diastereoselective One-Pot Reactions in Aqueous Media: Combined Asymmetric Rh-Catalyzed Conjugate Addition/Metal-Mediated Allylation. European Journal of Organic Chemistry, 2006, 2006, 3826-3833.	2.4	16
287	Design and Application of Selfâ€Assembled Low Molecular Weight Hydrogels. European Journal of Organic Chemistry, 2005, 2005, 3615-3631.	2.4	541
288	Copper-Catalyzed Enantioselective Conjugate Addition of Grignard Reagents to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Esters. Angewandte Chemie - International Edition, 2005, 44, 2752-2756.	13.8	143

#	Article	IF	CITATIONS
289	Synthesis and Properties of Dipyridylcyclopentenes. Molecular Crystals and Liquid Crystals, 2005, 431, 549-553.	0.9	4
290	Manganese-Based Oxidation with Hydrogen Peroxide. , 2005, , 295-326.		9
291	Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification. Chemical Communications, 2005, , 5910.	4.1	108
292	Asymmetric Catalysis Special Feature Part II: Copper-catalyzed asymmetric conjugate addition of Grignard reagents to cyclic enones. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5834-5838.	7.1	138
293	Monodentate phosphoramidites; versatile ligands in catalytic asymmetric intramolecular Heck reactions. Dalton Transactions, 2003, , 2017-2023.	3.3	51
294	In control of switching, motion, and organization. Pure and Applied Chemistry, 2003, 75, 563-575.	1.9	49
295	Second Generation Light-Driven Molecular Motors. Unidirectional Rotation Controlled by a Single Stereogenic Center with Near-Perfect Photoequilibria and Acceleration of the Speed of Rotation by Structural Modification. Journal of the American Chemical Society, 2002, 124, 5037-5051.	13.7	332
296	Remarkable Polymorphism in Gels of New Azobenzene Bis-urea Gelators. Langmuir, 2002, 18, 7136-7140.	3.5	117
297	Efficient catalytic oxidation of primary and secondary alcohols using a non-heme dinuclear iron complex. Chemical Communications, 2001, , 385-386.	4.1	35
298	In Control of Motion:  From Molecular Switches to Molecular Motors. Accounts of Chemical Research, 2001, 34, 504-513.	15.6	559
299	Unprecedented catalytic enantioselective trapping of arene oxides with dialkylzinc reagentsElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b1/b108541g/. Chemical Communications, 2001, , 2606-2607.	4.1	19
300	Enantioselective synthesis of bicyclic compounds via catalytic 1,4-addition-ring closing metathesis. Chemical Communications, 2001 , , $735-736$.	4.1	40
301	Photocontrolled self-assembly of molecular switches. Chemical Communications, 2001, , 759-760.	4.1	101
302	Catalytic Enantioselective Synthesis of Prostaglandin E1Methyl Ester Using a Tandem 1,4-Addition-Aldol Reaction to a Cyclopenten-3,5-dione Monoacetal. Journal of the American Chemical Society, 2001, 123, 5841-5842.	13.7	112
303	Enantioselective Copper-Catalyzed Allylic Alkylation with Dialkylzincs Using Phosphoramidite Ligands. Organic Letters, 2001, 3, 1169-1171.	4.6	121
304	Chiral Recognition in Bis-Urea-Based Aggregates and Organogels through Cooperative Interactions. Angewandte Chemie - International Edition, 2001, 40, 613-616.	13.8	260
305	Highly Enantioselective Copper-Phosphoramidite Catalyzed Kinetic Resolution of Chiral 2-Cyclohexenones. Angewandte Chemie - International Edition, 2001, 40, 927-930.	13.8	85
306	Highly Enantioselective Regiodivergent and Catalytic Parallel Kinetic Resolution. Angewandte Chemie - International Edition, 2001, 40, 930-932.	13.8	102

#	Article	IF	Citations
307	Color Indicators of Molecular Chirality Based on Doped Liquid Crystals. Angewandte Chemie - International Edition, 2001, 40, 3198-3200.	13.8	89
308	A catalytic route to acyclic chiral building blocks: Applications of the catalytic asymmetric conjugate addition of organozinc reagents to cyclic enones. Israel Journal of Chemistry, 2001, 41, 221-230.	2.3	12
309	CHEMISTRY: A New Twist on Chirality. Science, 2001, 292, 2021-2022.	12.6	27
310	New Functional Materials Based on Self-Assembling Organogels: From Serendipity towards Design. Angewandte Chemie - International Edition, 2000, 39, 2263-2266.	13.8	1,045
311	Chiral overcrowded alkenes; Asymmetric synthesis of (3S,3?S)-(M,M)-(E)-(+)-1,1?,2,2?,3,3?,4,4?-octahydro-3,3?,7,7?-tetramethyl-4,4?-biphenanthrylidenes. Chirality, 2000, 12, 734-741.	2.6	10
312	Phosphoramidites:  Marvellous Ligands in Catalytic Asymmetric Conjugate Addition. Accounts of Chemical Research, 2000, 33, 346-353.	15.6	682
313	The dinuclear manganese complex Mn2O(OAc)2(TPTN) as a catalyst for epoxidations with hydrogen peroxide. Chemical Communications, 2000, , 537-538.	4.1	67
314	Light-Driven Molecular Rotor:  Unidirectional Rotation Controlled by a Single Stereogenic Center. Journal of the American Chemical Society, 2000, 122, 12005-12006.	13.7	190
315	Remarkable O2-Effect in 1,4-Additions of Diethylzinc to 6-Acyloxy-2H-pyran-3(6H)-ones and 6-Alkoxy-2H-pyran-3(6H)-ones. Organic Letters, 2000, 2, 1593-1595.	4.6	34
316	Chiroptical Molecular Switches. Chemical Reviews, 2000, 100, 1789-1816.	47.7	1,021
317	Rheology and Thermotropic Properties of Bis-Urea-Based Organogels in Various Primary Alcohols. Langmuir, 2000, 16, 9249-9255.	3.5	186
318	A New Catalytic and Enantioselective Desymmetrization of Symmetrical Methylidene Cycloalkene Oxides. Organic Letters, 2000, 2, 933-936.	4.6	36
319	Light-driven monodirectional molecular rotor. Nature, 1999, 401, 152-155.	27.8	1,668
320	Cyclic Bis-Urea Compounds as Gelators for Organic Solvents. Chemistry - A European Journal, 1999, 5, 937-950.	3.3	346
321	Efficient Intermolecular Charge Transport in Self-Assembled Fibers of Mono- and Bithiophene Bisurea Compounds. Angewandte Chemie - International Edition, 1999, 38, 1393-1397.	13.8	274
322	Asymmetric Synthesis of Overcrowded Alkenes by Transfer of Axial Single Bond Chirality to Axial Double Bond Chirality. Angewandte Chemie - International Edition, 1999, 38, 2738-2741.	13.8	18
323	Absolute Asymmetric Synthesis: The Origin, Control, and Amplification of Chirality. Angewandte Chemie - International Edition, 1999, 38, 3418-3438.	13.8	709
324	Highly Enantioselective Catalytic Conjugate Additions to Cyclohexadienones. Organic Letters, 1999, 1, 623-626.	4.6	113

#	Article	IF	Citations
325	Cyclic Bis-Urea Compounds as Gelators for Organic Solvents. Chemistry - A European Journal, 1999, 5, 937-950.	3.3	8
326	Efficient Intermolecular Charge Transport in Self-Assembled Fibers of Mono- and Bithiophene Bisurea Compounds. Angewandte Chemie - International Edition, 1999, 38, 1393-1397.	13.8	3
327	Absolute Asymmetric Synthesis: The Origin, Control, and Amplification of Chirality. , 1999, 38, 3418.		3
328	Optically Active Diarylethenes for Multimode Photoswitching Between Liquid-Crystalline Phases. Advanced Materials, 1998, 10, 1080-1082.	21.0	147
329	Nontrivial Differentiation between Two Identical Functionalities within the Same Molecule Studied by STM. Journal of Physical Chemistry B, 1998, 102, 8981-8987.	2.6	41
330	Excited-State Dynamics of Tetraphenylethylene:Â Ultrafast Stokes Shift, Isomerization, and Charge Separation. Journal of Physical Chemistry A, 1997, 101, 9828-9836.	2.5	55
331	Chemistry of Unique Chiral Olefins. 3. Synthesis and Absolute Stereochemistry of trans- and cis-1,1 ,2,2 ,3,3 ,4,4 - Octahydro-3,3 -dimethyl-4,4 -biphenanthrylidenes. Journal of the American C Society, 1997, 119, 7256-7264.	Ch emt cal	86
332	Selfâ€Assembly of Bisurea Compounds in Organic Solvents and on Solid Substrates. Chemistry - A European Journal, 1997, 3, 1238-1243.	3.3	235
333	Chiroptical properties, structure, and absolute configuration of heterosubstituted 2(5H)-furanones. Chirality, 1997, 9, 537-544.	2.6	19
334	Chiroptical properties, structure, and absolute configuration of heterosubstituted 2(5H)â€furanones. Chirality, 1997, 9, 537-544.	2.6	2
335	Asymmetric Synthesis of 5-Substituted \hat{I}^3 -Lactones and Butenolides via Nucleophilic Additions to Oxycarbenium Ions Derived from 5(R)-(Menthyloxy)-4(R)- (phenylsulfanyl)-2(3H)-dihydrofuranone. Journal of Organic Chemistry, 1996, 61, 2920-2921.	3.2	38
336	Direct Coupling Procedure for the Synthesis of <i> N < /i > -Acyl-2-oxazolidinones Derived from $\hat{l}\pm,\hat{l}^2$-Unsaturated Carboxylic Acids. Synthetic Communications, 1996, 26, 261-268.</i>	2.1	13
337	Polymerâ€Bound Chiroptical Molecular Switches; Photochemical Modification of the Chirality of Thin Films. Israel Journal of Chemistry, 1996, 36, 341-348.	2.3	14
338	Ein hoch stereoselektiver optischer Schaltprozeß auf der Basis von Donorâ€Acceptorâ€substituierten dissymetrischen Alkenen. Angewandte Chemie, 1995, 107, 346-349.	2.0	21
339	A Novel Low Molecular Weight Chiral Gelator for Apolar Organic Solvents. Chemistry - A European Journal, 1995, 1, 594-597.	3.3	40
340	New methodologies for enantiomeric excess <i>(ee)</i> determination based on phosphorus NMR. Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 115-138.	0.0	64
341	The enantiomeric excess determination and dynamic behaviour of cyclic phosphoric acids used for resolution. Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 220-224.	0.0	3
342	Secondâ€harmonic generation from thin films of mixtures of an aggregated chiral 4â€nitroazobenzene dye and amylose acetate. Recueil Des Travaux Chimiques Des Pays-Bas, 1994, 113, 250-259.	0.0	7

#	Article	IF	Citations
343	Selfâ€assembling chiral metalloâ€clefts; synthesis and molecular structure of <i>N,N</i> ′â€bis(12 <i>H</i> â€benzo[l±]xanthenâ€12â€ylidene)â€1,2â€ethanediamine zinc(II)â€dichloride col Des Travaux Chimiques Des Pays-Bas, 1993, 112, 376-383.	mptex. R	ec œ il
344	Chiroptical Molecular Switches 2; Resolution, Properties and Applications of Inherent Dissymmetric Alkenes. Molecular Crystals and Liquid Crystals, 1992, 217, 133-138.	0.3	12
345	Asymmetric 1,4-Additions to Y-Menthyloxybutenolides; (part IV ¹) two Enantioselective Syntheses of 2-Methyl-1,4-Butanediol. Synthetic Communications, 1992, 22, 1367-1376.	2.1	16
346	Chiroptical Molecular Switches 1; Principles and Syntheses. Molecular Crystals and Liquid Crystals, 1992, 217, 129-132.	0.3	14
347	The 31P-NMR Spectroscopic Determination of the Enantiomeric Excess of Unprotected Amino Acids. Angewandte Chemie International Edition in English, 1992, 31, 1092-1093.	4.4	28
348	Die ³¹ Pâ€NMRâ€spektroskopische Bestimmung des EnantiomerenÃ⅓berschusses ungeschÃ⅓tzter AminosÃ g ren. Angewandte Chemie, 1992, 104, 1089-1091.	2.0	4
349	Oxidative debromination in a binuclear copper (I) complex. Recueil Des Travaux Chimiques Des Pays-Bas, 1991, 110, 89-91.	0.0	11
350	Improved Synthesis of 2,6,6-Trimethyl-1-cyclohexene-1-acetaldehyde, A Key Intermediate for Drimane-Related Sesquiterpenes. Synthetic Communications, 1990, 20, 589-596.	2.1	11
351	Asymmetric Diels-Alder reactions with a chiral maleic anhydride analog, 5-(1-menthyloxy)-2(5H)-furanone. Journal of Organic Chemistry, 1988, 53, 1125-1127.	3.2	81
352	Photoâ€oxidation of furans. Recueil Des Travaux Chimiques Des Pays-Bas, 1987, 106, 469-488.	0.0	81
353	Synthetic Molecular Motors., 0,, 559-577.		1
354	Copper-catalyzed Enantioselective Conjugate Addition Reactions of Organozinc Reagents., 0,, 224-258.		51
355	Photouncaging of Carboxylic Acids from Cyanine Dyes with Nearâ€Infrared Light. Angewandte Chemie, 0,	2.0	3
356	The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angewandte Chemie, 0, , .	2.0	4