
Taeho Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6894987/publications.pdf Version: 2024-02-01

Τλέμο Υρονι

#	Article	IF	CITATIONS
1	Improved production of thermo-alkali-tolerant fungal cellulolytic cocktail following Co-fermentation of sugarcane bagasse and secondary sewage sludge. Biomass Conversion and Biorefinery, 2024, 14, 6849-6854.	2.9	0
2	Biohydrogen production via integrated sequential fermentation using magnetite nanoparticles treated crude enzyme to hydrolyze sugarcane bagasse. International Journal of Hydrogen Energy, 2022, 47, 30861-30871.	3.8	18
3	Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresource Technology, 2022, 343, 126154.	4.8	195
4	Cobalt-ferrite/Ag-fMWCNT hybrid nanocomposite catalyst for efficient degradation of synthetic organic dyes via peroxymonosulfate activation. Environmental Research, 2022, 205, 112424.	3.7	10
5	Concentration Gradient Induced Delithiation Failure of MoO ₃ for Li-Ion Batteries. Nano Letters, 2022, 22, 761-767.	4.5	10
6	Excellent visible-light photocatalytic activity towards the degradation of tetracycline antibiotic and electrochemical sensing of hydrazine by SnO2–CdS nanostructures. Journal of Cleaner Production, 2022, 349, 131249.	4.6	61
7	Synergistic performance of <scp> Fe ₃ O ₄ </scp> / <scp> SnO ₂ </scp> / <scp> rGO</scp> nanocomposite for supercapacitor and visible lightâ€responsive photocatalysis. International Journal of Energy Research, 2022, 46, 6517-6528.	2.2	10
8	Passivation Failure of Al Current Collector in LiPF ₆ â€Based Electrolytes for Lithiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	37
9	State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere, 2022, 302, 134815.	4.2	81
10	Co-activated Conversion Reaction of MoO2:CoMoO3 as a Negative Electrode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 9814-9819.	4.0	6
11	Fabrication of Electrochemical Sensor Using SnO ₂ -Modified-TiO ₂ Nanocomposite for Detection of Hydrazine. Journal of the Electrochemical Society, 2021, 168, 067518.	1.3	12
12	Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: Tuning of band-gap and water depollution applications under visible light irradiation. Ceramics International, 2021, 47, 15073-15081.	2.3	36
13	Design for a longer photoinduced charge separation and improved visible-light-driven H2 generation through structure reversal and oxygen vacancies via Ni substitution into ZnFe2O4 spinel. Ceramics International, 2021, 47, 20317-20334.	2.3	7
14	Graphitic‑carbon nitride based mixed-phase bismuth nanostructures: Tuned optical and structural properties with boosted photocatalytic performance for wastewater decontamination under visible-light irradiation. NanoImpact, 2021, 23, 100345.	2.4	8
15	Dissolution of cathode–electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries. Journal of Power Sources, 2021, 503, 230051.	4.0	35
16	Ag-modified SnO2-graphitic-carbon nitride nanostructures for electrochemical sensor applications. Ceramics International, 2021, 47, 23578-23589.	2.3	36
17	Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects. Bioresource Technology, 2021, 338, 125511.	4.8	67
18	Adsorption promoted visible-light-induced photocatalytic degradation of antibiotic tetracycline by tin oxide/cerium oxide nanocomposite. Applied Surface Science, 2021, 565, 150337.	3.1	62

Ταεήο Υοόν

#	Article	IF	CITATIONS
19	Effective alkaline water electrolysis on nwMnO2-nsNi(OH)2 composite electrode via lattice oxygen participant adsorbate evolving mechanism. Applied Surface Science, 2021, 567, 150281.	3.1	4
20	Biogenic enabled in-vitro synthesis of nickel cobaltite nanoparticle and its application in single stage hybrid biohydrogen production. Bioresource Technology, 2021, 342, 126006.	4.8	11
21	A sensitive electrochemical detection of hydrazine based on SnO2/CeO2 nanostructured oxide. Microchemical Journal, 2021, 171, 106784.	2.3	38
22	Aerogel and its composites for sensing, adsorption, and photocatalysis. , 2021, , 125-144.		1
23	Microstructure Study on Initial Lithiation/Delithiation Cycle of Crystalline Silicon Wafer—ADDENDUM. Microscopy and Microanalysis, 2020, 26, 183-183.	0.2	0
24	Hydrogen Evolution Reaction by Atomic Layerâ€Deposited MoN _{<i>x</i>} on Porous Carbon Substrates: The Effects of Porosity and Annealing on Catalyst Activity and Stability. ChemSusChem, 2020, 13, 4159-4168.	3.6	14
25	Na,O-co-doped-graphitic-carbon nitride (Na,O-g-C3N4) for nonenzymatic electrochemical sensing of hydrogen peroxide. Applied Surface Science, 2020, 525, 146353.	3.1	45
26	Microstructure Study on Initial Lithiation/Delithiation Cycle of Crystalline Silicon Wafer. Microscopy and Microanalysis, 2019, 25, 2098-2099.	0.2	1
27	Spatial Molecular Layer Deposition of Ultrathin Polyamide To Stabilize Silicon Anodes in Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 4135-4143.	2.5	20
28	Electrochemically induced fractures in crystalline silicon anodes. Journal of Power Sources, 2019, 425, 44-49.	4.0	14
29	A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells. RSC Advances, 2019, 9, 30112-30124.	1.7	24
30	Interfacially Induced Cascading Failure in Graphiteâ€ 6 ilicon Composite Anodes. Advanced Science, 2019, 6, 1801007.	5.6	66
31	Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials. Nano Energy, 2019, 55, 477-485.	8.2	56
32	The Investigation of Electrolyte Oxidation and Film Deposition Characteristics at High Potentials in a Carbonate-Based Electrolyte Using Pt Electrode. Journal of the Electrochemical Society, 2018, 165, A1095-A1098.	1.3	14
33	Effect of Lithium Borate Additives on Cathode Film Formation in LiNi _{0.5} Mn _{1.5} O ₄ /Li Cells. ACS Applied Materials & Interfaces, 2017, 9, 20467-20475.	4.0	65
34	Surface Modification of LiCoO ₂ by NASICON-Type Ceramic Materials for Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2017, 17, 4977-4982.	0.9	9
35	Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries. Chemistry of Materials, 2017, 29, 3237-3245.	3.2	109
36	Spectroscopic and Density Functional Theory Characterization of Common Lithium Salt Solvates in Carbonate Electrolytes for Lithium Batteries. Journal of Physical Chemistry C, 2017, 121, 2135-2148.	1.5	114

Ταεμο Υοον

#	Article	IF	CITATIONS
37	Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation. Journal of the Electrochemical Society, 2017, 164, A2082-A2088.	1.3	38
38	Tris(pentafluorophenyl)silane as a Solid Electrolyte Interphase (SEI)-Forming Agent for Graphite Electrodes. Journal of the Electrochemical Society, 2017, 164, A1887-A1892.	1.3	2
39	Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes. Journal of Materials Science, 2017, 52, 3613-3621.	1.7	23
40	Carbon fabric as a current collector for electroless-plated Cu6Sn5 negative electrode for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 692, 583-588.	2.8	16
41	Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation. ACS Applied Materials & Interfaces, 2016, 8, 12211-12220.	4.0	204
42	Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chemistry of Materials, 2016, 28, 8149-8159.	3.2	339
43	Low-Temperature Performance Improvement of Graphite Electrode by Allyl Sulfide Additive and Its Film-Forming Mechanism. Journal of the Electrochemical Society, 2016, 163, A1798-A1804.	1.3	34
44	Increase of both solubility and working voltage by acetyl substitution on ferrocene for non-aqueous flow battery. Electrochemistry Communications, 2016, 69, 72-75.	2.3	37
45	Tris(pentafluorophenyl)silane as an Electrolyte Additive for 5 V LiNi _{0.5} Mn _{1.5} O ₄ Positive Electrode. Journal of the Electrochemical Society, 2016, 163, A898-A903.	1.3	23
46	A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries. Journal of Power Sources, 2015, 283, 300-304.	4.0	41
47	An azamacrocyclic electrolyte additive to suppress metal deposition in lithium-ion batteries. Electrochemistry Communications, 2015, 58, 25-28.	2.3	23
48	Reinforcement of an electrically conductive network with ethanol as a dispersing agent in the slurry preparation step. Journal of Power Sources, 2015, 287, 359-362.	4.0	12
49	Thermal Behavior of Solid Electrolyte Interphase Films Deposited on Graphite Electrodes with Different States-of-Charge. Journal of the Electrochemical Society, 2015, 162, A892-A896.	1.3	25
50	Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2325-A2330.	1.3	120
51	Re-Deposition of Aluminum Species after Dissolution to Improve Electrode Performances of Lithium Manganese Oxide. Journal of the Electrochemical Society, 2014, 161, A2020-A2025.	1.3	4
52	Compositional Change of Surface Film Deposited on LiNi0.5Mn1.5O4Positive Electrode. Journal of the Electrochemical Society, 2014, 161, A519-A523.	1.3	31
53	Effective passivation of a high-voltage positive electrode by 5-hydroxy-1H-indazole additives. Journal of Materials Chemistry A, 2014, 2, 14628-14633.	5.2	21
54	A Firstâ€Cycle Coulombic Efficiency Higher than 100 % Observed for a Li ₂ MO ₃ (M=Mo or Ru) Electrode. Angewandte Chemie - International Edition, 2014, 53, 10654-10657.	7.2	26

Ταεήο Υοόν

#	Article	IF	CITATIONS
55	Mechanism of Co3O4/graphene catalytic activity in Li–O2 batteries using carbonate based electrolytes. Electrochimica Acta, 2013, 90, 63-70.	2.6	48
56	Li2NiO2 as a sacrificing positive additive for lithium-ion batteries. Electrochimica Acta, 2013, 108, 591-595.	2.6	63
57	1,3,5-Trihydroxybenzene as a film-forming additive for high-voltage positive electrode. Electrochemistry Communications, 2013, 27, 26-28.	2.3	39
58	Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 2833.	5.2	109
59	The Effects of Radio Frequency Sputtering of TiO ₂ on Li[Li _{0.07} Ni _{0.38} Co _{0.15} Mn _{ Cathode for Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2013, 13, 7924-7931.}	;0.4 <td>JB>]O&t</td>	JB>]O&t
60	A Comparative Study on Thermal Stability of Two Solid Electrolyte Interphase (SEI) Films on Graphite Negative Electrode. Journal of the Electrochemical Society, 2013, 160, A1539-A1543.	1.3	37
61	Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature. Journal of Power Sources, 2012, 215, 312-316.	4.0	158